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ROC curves using different p-values for binding and conservation criteria.

Here we show the ROC curves computed as in Figure 3A using all the available conservation criteria considered in MacIsaac  et al, 2006. 
Conservation criterium: p-value for binding 0.05; no phylogenetic conservation:
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Conservation criterium: p-value for binding 0.05; 1 level of phylogenetic conservation:
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Conservation criterium: p-value for binding 0.05; 2 levels of phylogenetic conservation:
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Conservation criterium: p-value for binding 0.001; no phylogenetic conservation:
[image: image4.emf]0.44 0.45 0.46 0.47 0.48 0.49

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

False positive rate

True positive rate

Macisaac_p001_cons0

 

 

simultaneous

lead-lag


Conservation criterium: p-value for binding 0.001; 1 level of phylogenetic conservation:
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Conservation criterium: p-value for binding 0.001; 2 levels of phylogenetic conservation:
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Equations used for the simulations shown in Figure 1
The abundance of mRNA is determined by two regulated processes: transcription and degradation, both specifically affecting transcript levels. Formally, we can describe the rate of change of each mRNA species m(t) as the result of a time-varying rate of transcription function T(t) and a time-varying rate of degradation function D(t)  as follows
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The simulations shown in Figure 1 has been performed by assuming a first order kinetics for the transcript degradation process
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where 
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 is the transcription rate and 
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 is the degradation rate.
Lead-lag relationship and dynamic protein complex formation

Here we show, using a simple mathematical model, that mRNA time profiles of genes encoding two subunits of a protein complex are in principle related by a lead-lag relationship. To see this, we follow the reasoning of Jansen et al., 2006, and consider a kinetic model of  protein and mRNA concentrations during the formation of a protein complex. Let 
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 be the protein concentrations of two different subunits of a protein complex, and 
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 the mRNA concentration of the corresponding gene. Then, we consider a first order model as follows
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where 
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 is an mRNA traslation rate constant and 
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 is a protein degradation constant. The two equations can be rewritten in the Laplace domain as
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where 
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 are the Laplace transforms of the protein and mRNA concentration time profiles. By straightforward algebraic manipulations we obtain
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so that we can write the relationship, in the Laplace domain, between the time profiles of the mRNA concentrations of the two subunits of the protein complex
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Therefore, the above formula establishes a lead-lag relationship between 
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and this is a formal explanation of the high lead-lag R2 values observed for gene expression time profiles of the genes coding for subunits of the replication complex shown in Figure 7.
List of best pairs exceeding the 95th percentile

The list of gene pairs whose lead-lag R2 value is larger than the 95th percentile of the overall distribution can be found, in excel format, at the address:  

http://www.dis.uniroma1.it/~farina/leadlag/leadlag.xls
Time-delayed profiles and lead-lag R2
Here we show that the lead-lag R2 is able to capture the presence of a time-delayed profile in an approximate but efficient way. In fact, in general, the problem of finding the optimal time-delay between two given profiles is combinatorial in nature since one has to search among all possible delays or using local clustering techniques (see Qian et al., 2001) which are able to reduce to some extent the inherent problem complexity. To see how the lead-lag R2 may approximately describe shifted time profiles we first assume that the mRNA signal is sinusoidal. In this case we have:
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where T  is the time period of the sinusoid and 
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 is the time-delay. Using a well known trigonometric formula we get
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where
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Consequently, the lead-lag R2 of two time-delayed sinusoids is equal to its maximal value, i.e. to 1. In this case, the presence of a delay is perfectly detected without error. By contrast, in the case of a generic profile (i.e. not well described by a sinusoid) we show hereafter that still a time-delayed profile can be described by our model. In fact, in the Laplace domain, a time-delayed relationship is the following 
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Since the lead-lag relationship in the Laplace domain is a rational function, we consider the widely  used first order Padé approximant. The Padé approximation of the delay in the Laplace domain is given by
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where
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so that we end up with a lead-lag relationship which is an optimal first order Padè approximation of a time-delayed relationship. Note that, such approximation procedure can be applied also in the presence of  a time-warp between the delayed time profiles by simple rescaling of the coefficients.
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