
 

Supplemental Methods 

A KMM Example. Here we elucidate the definition of the KMM and the process 

by which it is used to generate a motif model - either a PSSM or a FMM. Figure 

S1 illustrates an example of a KMM (on the left side) that contains four 

sequences. As illustrated, the sequences are properly aligned in a manner that 

preserves their position relative to the KMM motif (as described in the following 

section). In order to transform the KMM into a motif model we extract all of the 

hits of each of the KMM  K-mer sequences in the positive sequences input set. 

We extend each hit of a K-mer according to the KMM alignment. We then use this 

set of extended hits as a set of aligned TFBSs from which we learn either a 

PSSM or a FMM. This transition from KMM to a motif model is used both during 

the KMM growing algorithm to maintain a proper alignment (as described below 

in Maintaining the KMM Alignment), and in the final step of creating a motif 

model from the KMM hits in the positive sequences set. 

Growing the Seed KMM. After its construction the K-mer graph contains a 

singleton K-mer in each vertex. The vertex with the best MHG p-value is chosen 

as a “seed KMM”. Next, a greedy algorithm is used to “grow” the KMM set and 

improve its MHG p-value. The algorithm performs a series of steps along the 

edges of the graph in which neighbors of the seed KMM are joined into it. Before 

we describe the KMM growing algorithm, let us refine the definition of a KMM. A 

KMM contains two sets of sequences: an active set },...,{ 1 SNssS =  and a “non-

contributing” set },...,{ 1 TNttT = . While the active set defines the output KMM and 

contribute to the MHG p-value computation, the “non-contributing” does not, and 

is used only during the KMM growing process. A hit (appearance in an unaligned 

input sequence) of the KMM is thus defined as a hit of at least one of Ssi ∈ . At 

initiation the seed KMM is defined by }{ 1sS =  and {}=T  (empty set). 

We will now describe a step of the greedy KMM growing algorithm. Let us 

assume, without loss of generality, that at a certain point during the algorithm’s 



 

run, the seed KMM contains N active sequences },,{ 1 NssS K=  and M non-

contributing sequences },,{ 1 MttT K= . Assume we consider joining a neighbor 

vertex to the seed KMM. As mentioned above, this vertex will contain a singleton 

KMM. We will refer to the single sequence in the neighbor KMM as s'. 

The algorithm can perform two types of join steps: an “OR” step and an “And” 

step. In an “OR” step, s' will simply be added to the seed node KMM’s active set, 

such that the KMM will then contain the active set }',,,{ sssS NK1= . In an “AND” 

step, the algorithm merges s' with a subset of the KMM sequences 

},,,,,{
lk jjii ttssV KK

11
= . A merge operation means that each Vvi ∈  can be 

perfectly aligned to s' when one is shifted up to ShiftM  base pairs with respect to 

the other. The merge operation creates a new sequence that is the concatenation 

of the first sequence with the unaligned remainder of the other sequence. Denote 

the new sequence set generated by merging s' with each of the sequences of V 

as V'. An “AND” step as defined above will result in the KMM with the active set 

)'},,{\( VssS
kii ∪K

1
 and the non-contributing set )},,{\( VttT

ljj ∪K
1

. 

This explains the role of the non-contributing sequences for future “AND” steps. 

Before taking the next step, the algorithm considers all possible “OR” and 

“AND” steps. Each step is evaluated in terms of the seed KMM’s MHG p-value 

after it. The step that achieves the best p-value is chosen and the chosen 

neighbor is joined into the seed KMM. When no step that improves the seed 

KMM’s MHG p-value exists, the seed KMM vertex is removed from the graph and 

a new seed KMM vertex is chosen. The algorithm repeats the above process 

iteratively until there are no more vertices left in the graph. The algorithm then 

ranks all the outputted KMMs by their MHG p-value, and the best M are chosen 

as output for the next phase of the algorithm. 

 

Maintaining the KMM Alignment. Suppose we perform a step (an “OR” step or 

an “AND” step) on the graph, resulting in the addition of a new sequence s' to the 

KMM active set S. In order to maintain a proper alignment of the new active set, 

we find the offset of s' with respect to S’s alignment prior to the step. In order to 



 

do so, we first use the hits of S in the positive input set to learn a motif (in this 

work we learn a PSSM), denoted by P (see Figure S1 for illustration). This motif 

represents the KMM before the step. We then use P to scan around each hit of s' 

in the positive set, and for each offset between P and the hit we compute the log 

probability of the subsequence that is aligned with P. We then sum for every 

offset the log probabilities computed over all the hits of s'. The offset with the 

maximum sum of log probabilities is chosen as s' KMM alignment offset. 

 

Determining Similarity of Motifs - KMMs Similarity. In order to remove similar 

KMMs from the final output of the first step of the motif finding algorithm (see 

Figure 2) we need to identify similar motifs. We will now describe the method we 

use to determine similarity of KMMs. Given two KMMs, we compare each 

sequence of the first KMM to each of the sequences of the second KMM. 

Suppose sequences 1s  and 2s  are compared. Denote by 1L  and 2L  the 

sequences lengths, respectively, and let ),,min( min21min

KMM

alignLLLL =  (in this work we 

used 6min =KMM

alignL ). Sequences 1s  and 2s  are regarded as similar if 2s  or 2s ’s 

reverse complement can be perfectly aligned with a shifted 1s , such that the 

aligned part’s length is at least KMM

alignLmin . The two KMMs are regarded as similar if 

a sequence of the first and a sequence of the second are found to be similar. We 

used this method to remove similar de-novo found motifs (see Figure 2). 

 

Determining Similarity of Motifs - KMM Similarity to PSSM. In order to 

evaluate the performance of our motif finder we wanted to compare its output to 

known TF motifs. Since known TF motifs are usually represented as PSSMs, we 

decided to use the PSSM output version of our algorithm. Given an output KMM 

we first used the algorithm standard procedure to learn a PSSM, which we will 

refer to as KP  (see Figure S1). Assume, we want to compare our motif ( KP ) to a 

known motif ( P ). Denote by KL  and PL  the two PSSMs lengths respectively, and 

let ),,min( minmin

PSSM

alignKP LLLL =  (in this work we used 6min =PSSM

alignL ). To compare the 



 

two PSSMs, we used the Inter-Motif distance suggested by by Harbison et al.  [1] 

in a similar way to Narlikar et al.  [2]. This measure defines the distance between 

two PSSMs under a given alignment as follows:  

{ }
∑ ∑
= ∈

−=
L

i TGCAb

K

bibi

K
PP

L
PPD

1 ,,,

2

,, )(
2

1
),(

                                   

where L  is the aligned part length. Let us now denote by },,{ 1 jaaA K=  the set 

of all partial alignments of P  and KP  of length minLL ≤ , such that the aligned part 

of KP  has an average information content of at least one bit. We also denote by 

),( K

i PPD  the distance between P  and KP  under a specific alignment ia . We 

can now define the measure of similarity between the two PSSMs, ),( KPPdist , by 

the equation:  

)},({max),( K

i
Aa

K
PPDPPdist

i∈
=

  

As in Narlikar et al., P  and KP  are considered similar if 25.0),( ≤K
PPdist . In 

that case, the KMM and  P   are considered to be similar. 

 

Recognizing Dimer Motifs.  A special case that our motif finder recognizes and 

handles, is that of dimer motifs. Testing whether a motif is a dimer motif is 

performed right after a new seed KMM vertex is chosen, containing a single K-

mer. First, a PSSM that represents the seed KMM K-mer is learned (Figure S3 

(a)). We add uniform prior pseudo counts to refrain from zero probabilities. Next, 

the PSSM is used to “scan” the surroundings of each hit of the seed K-mer in the 

positive sequences set, computing the log probability of the sequence at each 

offset relative to the K-mer hit according to the PSSM (Suppl. Figure S3 (B)). The 

PSSM log probabilities are summed for every offset over all the seed K-mer hits. 

Clearly, for every K-mer hit the highest probability will be at offset 0, (exactly at 

the seed K-mer hit). However, in the case of a dimer motif, that has a signal 

repeat of length R (where R = monomer length + length of gap between 



 

monomers), we assume that the seed K-mer reside within a monomer. Hence, a 

similar K-mer is expected to appear in the other monomer, at an offset of +R or    

-R relative to the hit. So for the dimer case, the second and third best offsets 

overall will be the ±R offsets (as illustrated at Figure S3 (B)). This test might fail 

in cases where the K-mer length is larger than R, or where the K-mer length is 

much smaller than R and we do not scan far enough around the seed K-mer hits. 

These cases, however, can be overcome by choosing a reasonable range of K-

mer lengths, and a large enough range of scanning. False positives may be of 

less concern, due to the fact that our algorithm will generate both dimer and 

monomer motifs, and so false “dimer” motifs will most likely be discarded later. 

 

Growing Dimer KMMs. KMMs may represent dimers by holding two different 

alignment offsets per single KMM sequence. When growing a dimer KMM, each 

new sequence is passed through the dimer recognition test (same as described 

above for the first K-mer). If it passes the test, then it receives two alignment 

offsets, one for each monomer. Else, it simply receives the best alignment offset 

found for it. Note that each KMM sequence donates all of its hits to the KMM, 

even if they do not necessarily fall within dimer binding sites, hence the KMM 

enrichment is the monomer enrichment in the data. 

 

Learning Dimer Motifs. Since the dimer KMM consists essentially of monomer 

sequences, when we wish to generate aligned dimer sequences (and from them 

learn a FMM or a PSSM) as described in Figure S1 we may introduce a lot of 

noise, in the form of non dimeric sequences that contain only a single monomer. 

Such sequences may be added for two reasons: First, the input data sequences 

contain not only dimer binding sites but also monomer binding sites (whether 

those are biologically valid sites, we do not claim). Second, even for hits in true 

dimer binding sites, since for a KMM sequence we do not know in advance for 

any of its hits whether it occurs in the left or right monomer, for each hit we take 

both surrounding putative dimer sequences. Figure S4 describes the procedure 

we perform in order to generate an alignment of dimer binding site sequences: An 



 

initial PSSM representation of the dimer KMM motif, of length DL , is learned 

(Figure S4 (A)), as described in Figure S1. This PSSM model is based on 

aligned sequences that suffer from both noise origins mentioned above. This 

initial dimer PSSM is used (Figure S4 (B)) to scan the surroundings of every hit 

of each KMM sequence (represented by a short blue line in Figure S4 (B)) in the 

positive sequences set, computing the log probability of each sequence of length 

DL  along the scan. The one that gets the maximal log probability (represented by 

a golden line in Figure S4 (B)) is picked. This process rids of noise of the second 

origin, as described above. However (Figure S4 (C)), the noise from the first 

origin (monomer binding sites) remains, along with true dimer binding sites 

(surrounded by a light green rectangle in Figure S4). In order to be able to asses 

whether a sequence contains a dimer or only a monomer, a monomer KMM is 

produced (Figure S4 (D)) from the dimer KMM (by properly taking only a single 

offset per KMM sequence), and a PSSM representing the monomer KMM, of 

length ML , is learned. This monomer PSSM is used (Figure S4 (E)) for scanning 

each of the above picked DL  long sequences. For dimer binding site sequences 

the offset between the two best hits is expected to be exactly R, the signal repeat. 

Sequences for which the offset between two best hits was not R are discarded 

(Figure S4 (F)). The remaining are aligned and used as TFBSs from which a 

FMM or PSSM representing the dimer motif will be learned. 

Motif Finder Running-Time and Accepted Input Data Size. Our motif finder 

accepts large sequence data sets as input, with memory consumption scaling 

approximately linearly with their size. However, the running time does not 

necessarily scale linearly with the input size. For different data sets, K-mer 

grpahs with different levels of sparseness may be generated during the run. As 

the graph is less sparse, running time may scale quadratically. The level of 

sparseness depends mainly on underlying properties of motifs enriched in the 

data, and not on the set size. The following examples relate to run time on a 

machine with 2.6GHz processor and 4GB RAM. As a first example, for a data set 

of 152 positive sequences and 513 negative sequences, of mean length 338 



 

bases, the run time was 10min, with 4 K-mer graph run iterations (with seed 

lengths ranging between 5 and 8 bases). As a second example, for a data set of 

1872 positive sequences and 3744 negative sequences of mean length 810 

bases, the run time was 3hr:23min, with 4 K-mer graph run iterations (with seed 

lengths ranging between 5 and 8 bases). As a third example, for a data set of 

15000 positive sequences and 15000 negative sequences of mean length 1069, 

the run time was 10hr:42min, with a single K-mer graph run iteration (with a seed 

length of 8 bases). Currently, on a 4GB RAM machine, our motif finder copes with 

~35000 input sequences of mean length 1000. 

Choice of a Set Size Threshold for the Motif Finder Performance Evaluation. 

In the motif finder evaluation section we described how we generated motifs for 

random sets from the Harbison et al.  data, in order to compare their MHG p-

values with those of motifs found for the Harbison et al. TF-condition sets. Each 

TF-condition set was compared with the random sets of closest size among 15 

different sizes ([10,20…100,120…200]). In Figure S5 we present the distributions 

of log MHG p-values for the TF-condition sets, partitioned into different bins by 

the compared random sets of the same size (for example, the 47 TF-condition 

sets of sizes 15 to 24 sequences were compared to the random sets of size 20). 

As can be seen, for very small sets, of less than 35 positive sequences, motifs 

found by our motif finder could not be effectively distinguished from motifs that 

appear in randomly selected sets of the same size. On the contrary, for sets 

larger than 35, distinction was good. In general, it is evident that as set size 

increases, motifs found by our motif finder in true TF-condition sets are rarely 

random motifs. Hence, we performed the motif finder evaluation on sets of size 

35 or more. 



 

Generating Negative Sets. Each data set contained positive sequences only. 

We generated negative sets by taking for each positive sequence the two flanking 

sequences of same length. For the “E2F4_Boyer” and the “PRC2_SUZ12” sets, 

since they had high GC content, we generated a negative set by randomly 

extracting for each positive sequence a sequence of same length and similar GC 

content (±5%) from the human genome. For each set we used only sequences 

shorter than 3000 bases. For the “STAT1_IFNg” set we randomly reduced the 

positive and negative set sizes to 15,000 sequences each (because of run time 

memory constraints, see the the motif finder run-time performance analysis 

section). 

Generating FMM Sufficient Statistics. The first step of learning an FMM from 

aligned TFBS dataset, is to collect sufficient statistics for the set of all possible 

features. In this work we focus on features that are indicators for the appearance 

of specific nucleotides in a specific set of positions (for example: “A at position 2, 

and G at position 4”). Therefore, the set of all possible features is defined as the 

collection of such features over all possible combination of motif positions and 

nucleotides. The size of the set of all possible features, F , can be bound using 

the inequality: )()(
D

D

d

D
d

i

LAOiLAF ∑∏
=

−

=

=−≤
1

1

0

 where A is the alphabet size 

(for DNA 4=A ), D is the maximum domain size and L is the motif length. 

Although this number can get quite large (for example: 

61602024 ≤⇒=== FLDA ,,  and 4439202034 ≤⇒=== FLDA ,, ), usually a 

TFBS data set contains only a small fraction of all possible features. The 

sufficient statistic for each feature is defined as the number of appearances of the 

feature in the data set. This number, divided by the size of the aligned TFBS 

dataset, is equal to the empirical probability of the feature. This probability is used 

in later steps of the algorithm including statistical tests that can reduce the feature 

pool size. The first step of learning an FMM from an aligned dataset of binding 

sites, is to count the appearances of all the features that exist in the data set. 



 

Figures 

Figure S1 

 

An example for a transition from KMM to FMM or PSSM. The KMM in this 

example contains four short sequences. The length of the KMM sequence 

alignment is 11bp. Hence, we determine that the motif length will be 11bp long. 

We next extract all of the hits of each of the KMM K-mer in the positive set. We 

extend each hit of a K-mer according to the KMM alignment to produce an 11bp 

long putative TFBS. For example, for “Seq1” hits we extend two bases to the left 

and one to the right, due to its position in the alignment. Note that different K-

mers may have mutual hits (in the figure the sequence surrounded by a blue 

dashed line is a hit for both “Seq2” and “Seq3”). In this way we generate a set of 

11bp long aligned putative TFBS sequences, from which we can learn an FMM or 

PSSM. 

 



 

Figure S3 

 

Testing for a dimer. (A) A PSSM that represents the seed KMM K-mer is 

learned and used to scan (B) the K-mer hits surrounding area. Here a K-mer that 

is part of a monomer of a dimer motif is illustrated. Hence each K-mer hit has 

another K-mer hit in a fixed ± R offset. 

 



 

Figure S4 

 

Generating an alignment of dimer binding site sequences. (A) An initial 

PSSM representation of the dimer KMM motif is learned from an alignment that 

contains both true dimer sequences and false ones. (B) The dimer PSSM is used 

to build a set of dimer sequence candidates with a higher ratio of true dimer 

sequences. (C) Still, this set contains both sequences that are from dimer binding 

sites (in light green rectangle) and such that are not (contain monomer binding 

sites) and need to be discarded. (D) A monomer KMM and its PSSM 

representation are generated. (E) The monomer PSSM is used to scan each of 

the sequences picked in (B). For dimer binding site sequences (in light green 

rectangle) the offset between the two best hits is expected to be exactly R, the 

signal repeat. (F) Sequences for which the offset between two best hits was not R 

are discarded. The remaining are regarded as dimer binding site sequences.  

 



 

Figure S5 

 

Comparison of Harbison et al. TF-condition sets and random sets MHG p-

values. MHG p-values distributions for binned groups of Harbison et al. TF-

condition sets (in red) and for the respectively sized randomly selected sets (in 

blue). The title of each plot defines range of sets size and the number of TF-

condition sets in the bin. 



 

References 

1. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, et al. (2004) Transcriptional regulatory 

code of a eukaryotic genome. Nature 431: 99-104. 

2. Narlikar L, Gordan R, Hartemink AJ (2007) A nucleosome-guided map of transcription factor binding 

sites in yeast. PLoS Comput Biol 3: e215. 

 


