Supplemental Results

Comparing our FMM Motif Finder to Other Available Motif Finders.
We sought to test our motif finder's performance versus other available motif
finder software. A variety of such tools exists, and the question arises: What are
the benefits of using our motif finder, as FMM motif models can be learned from
aligned TFBSs that are extracted from the data by any other motif finder. As data,
we chose most of the datasets described in Table 1: NRSF, CTCF, P53 PETS3, c-
Myc PET3, Oct4 _Loh, Nanog Loh, Oct4 Boyer, Nanog Boyer, Sox2 Boyer. For
each set, we used the 5-fold cross validation (CV) scheme that we used in
section "Results: Learning TF Binding Specificities Features from Unaligned
Human and Mouse TF Bound Regions".

For each dataset, we used the following protocol:

(1) For each CV group, and for each motif finder: run with the training data as
input, and acquire putative aligned TFBSs for the best motif.

(2) For each CV group, and for each motif finder: learn both a FMM and a PSSM
representation of the best motif, from the aligned TFBSs generated in step 1.

(3) For each CV group, and for each motif finder: score each of the test
sequences (positive and negative) by the log-likelihood of the best hit of the FMM
in that sequence (FMM_score), and similarly with the PSSM (PSSM_score, so
each sequence has two scores). (Repeat also for the train sequences).

(4) For each CV group, and for each motif finder: rank all test sequences (positive
and negative) by their FMM_score (from highest to lowest). Using ROC (receiver
operator characteristic) analysis, based on the above ranking, calculate the AUC
(the area under the ROC curve), as a measure of how well the FMM
discriminates the positive set from the negative set (an AUC of 0.5 is no better
than random, the higher the AUC the better the discrimination). Call this AUC
FMM_AUC and use it as a score of the FMM. Similarly, calculate the
PSSM_AUC. (Repeat also for the train sequences).

(5) For each motif finder other than our FMM maotif finder: for each CV group,
calculate the differences: "FMM_AUC(FMM motif finder) - FMM_AUC(other motif



finder)", "PSSM_AUC(FMM motif finder) - PSSM_AUC(other motif finder)",
"FMM_AUC(FMM motif finder) - PSSM_AUC(other motif finder)". Calculate the
means and standard deviations of the above differences over the five CV groups.
(Here the protocol ends).

To follow the above protocol, we sought to compare our motif finder to other motif
finders that output aligned TFBSs (as required by step 1). Different motif finders
may find motifs of different lengths, thus they cannot be compared directly based
on the likelihood of their best hits (FMM _score and PSSM_score). Since we
expect a true motif to discriminate between the positive and negative sets, we
chose the AUC score as a basis for comparison. This score eliminates the fear of
motif-length related bias in favor of any of the motif finders. As we used a
discriminative score, and as our FMM motif finder is discriminative, we sought to
test our motif finder also versus a discriminative motif finder. To meet the above,
we compared our motif finder's performance with three other: AlignACE [1],
MDscan [2] and DEME [3]. The first two are non discriminative, thus were run
using only the positive training sequences sets as input. The last is a state-of-the-
art discriminative motif finder, thus received the negative training sequences sets
as well (as did our own motif finder). The three motif finders were run with default
parameters. MDscan and DEME require that the motif width be given as input.
For that matter we used the lengths of the best motifs found by our motif finder for
the datasets (see below in "Supplemental Results: De-Novo Motifs"). The
comparison results are summarized in Figures S6-S8.

Figure S6 shows the results when we compared PSSMs learned by our motif
finder to PSSMs learned by the other tools. In a majority of the cases, our PSSMs
were found to better represent the motif. This supports the claim that our motif
finder does not produce aligned TFBSs that are wrongfully biased against the
PSSM representation.

Figure S7 shows the results when we compared FMMs learned by our motif
finder to PSSMs learned by the other tools. In a majority of the cases our FMMs
were found to better represent the motif. This supports our basic claim that
producing FMM motif models using our motif finder has an advantage over the



PSSMs that other motif finders produce.
Figure S8 shows the results when we compared FMMs learned by our motif

finder to FMMs learned by the other tools. In a majority of cases our FMMs were
found to better represent the motif. This demonstrates the advantage of using our

motif finder in order to learn FMM motif models.
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Differences between AUC Scores of our PSSMs and the other motif finders
PSSMs. The means and the standard deviations (calculated over the five CV
groups) of the difference between our PSSM AUC score and the other tool PSSM
AUC score. The blue bars and error bars are for AUC scores based on the test
data. The light green error bars are for AUC scores based on the train data.
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Differences between AUC Scores of our FMMs and the other motif finders
PSSMs. The means and the standard deviations (calculated over the five CV
groups) of the difference between our FMM AUC score and the other tool PSSM
AUC score. The blue bars and error bars are for AUC scores based on the test
data. The light green error bars are for AUC scores based on the train data.
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Evaluation Of The L1 Penalty Term Free Parameter On Synthetic Data. FMM
model performance in terms of the average test set likelihood on 8 synthetic data
sets (sampled from the models in Figure 3) as a function of the number of data
instances and the L1 penalty free parameter (a). We observed that the effect of
the value of a is, as predicted much stronger on small datasets. Where too small
values of a might not prevent overfitting (those resulting in low average test
likelihood), too large values might pose to harsh restriction on the learned
features. However relativelly small values of a (a=1) have prevented overfitting
for PSSM sampled datasets of size 1000. Base on this results we selected the
value 1, which gave relativelly good performances on all datasets, for our runs.



De-Novo Motifs. Figures S9-S23 show a summery of the de-novo found motifs

in the examined human and mouse data sets, which are described in Table 1.

Figure S9
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A summary of all de-novo found motifs for the c-Myc dataset. “P”/“N” stand

for the number of positive/negative sequences, “PH”/“NH” stand for the number of

positive/negative sequences in which there is a KMM hit.



Figure S10

| Data set: c-Myc_PET3 |
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A summary of all de-novo found motifs for the c-Myc_PET3 dataset. “P"/“N”
stand for the number of positive/negative sequences, “PH’/“NH” stand for the
number of positive/negative sequences in which there is a KMM hit.
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A summary of all de-novo found motifs for the CTCF dataset. “P"/“N” stand

for the number of positive/negative sequences, “PH’/“NH” stand for the number of

positive/negative sequences in which there is a KMM hit.



Figure S12

Data set: E2F4 Boyer
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A summary of all de-novo found motifs for the E2F4_Boyer dataset. “P"/“N”

stand for the number of positive/negative sequences, “PH"/“NH” stand for the

number of positive/negative sequences in which there is a KMM hit.



Figure S13
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A summary of all de-novo found motifs for the NANOG_Boyer dataset.
“P”/“N” stand for the number of positive/negative sequences, “PH"/“NH” stand for
the number of positive/negative sequences in which there is a KMM hit.
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A summary of all de-novo found motifs for the NANOG_Loh dataset. “P”"/“N”

stand for the number of positive/negative sequences, “PH’/“NH” stand for the

number of positive/negative sequences in which there is a KMM hit.




Figure S15

Data set: NRSF

[Tndex | P | PH | N | NH | MHG P-val | PSSM | FMM |
. O Gices
cg i e
S -
1 | 1872 | 1630 | 3744 | 358 ) . -
5!1—( AC A A IT
2 1872 | 245 | 3744 | 195 10-23 v - E ==
3 | 1872 | 63 | 3744 | 10 1020 vy v .
4 1872 | 138 | 3744 | 119 | 2-10-12 |
Zﬁ A A ‘
5 1872 | 198 | 3744 | 212 | 6-1012 27 TTTTE T L NV

A summary of all de-novo found motifs for the NRSF dataset. “P"/“N” stand

for the number of positive/negative sequences, “PH’/“NH” stand for the number of

positive/negative sequences in which there is a KMM hit.
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Data set: OCT4_Boyer

‘Index | P | P}I|

N

[ NH | MHG P-val |

FMM

349

1206

327

10—40

FUNYT0ONROOrNMTH

esa] ITUCAT Rt

" T

B
i

521

1206

884

olgs

-

OH>O)
= +H

-H>>(_Wlﬁ O=>0)

H
a3 |

22

1206

3-1071

FANTNONRASENNTOON

[ —
f——
B —
>N0—
>0
(S B -
o—i| -
Oy =
5= —
=] .

e
Lam—

[c(c]

64

1206

46

6-107°

1 603
2 603
3 603
4 603
5 603

219

1206

316

2.10-6

A summary of all de-novo found motifs for the OCT4_Boyer dataset. “P"/“N”
stand for the number of positive/negative sequences, “PH"/“NH” stand for the
number of positive/negative sequences in which there is a KMM hit.
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Figure S17

‘ Data set: OCT4_Loh
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A summary of all de-novo found motifs for the OCT4_Loh dataset. “P”’/“N”
stand for the number of positive/negative sequences, “PH"/“NH” stand for the

number of positive/negative sequences in which there is a KMM hit.
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A summary of all de-novo found motifs for the P53 dataset. “P”/“N” stand for
the number of positive/negative sequences, “PH’/“NH” stand for the number of

positive/negative sequences in which there is a KMM hit.
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| Data set: P53 PET3 |
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A summary of all de-novo found motifs for the P53_PET3 dataset. “P”/“N”
stand for the number of positive/negative sequences, “PH”/“NH” stand for the
number of positive/negative sequences in which there is a KMM hit.
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A summary of all de-novo found motifs for the PRC2_SUZ12 dataset. “P”/“N”
stand for the number of positive/negative sequences, “PH’/“NH” stand for the
number of positive/negative sequences in which there is a KMM hit.
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Data set: SOX2_Boyer
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A summary of all de-novo found motifs for the SOX2_Boyer dataset. “P"/“N”

stand for the number of positive/negative sequences, “PH"/“NH” stand for the

number of positive/negative sequences in which there is a KMM hit.
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Data set: STAT1_IFNg
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A summary of all de-novo found motifs for the STAT1_IFNg dataset. “P"/“N”

stand for the number of positive/negative sequences, “PH’/“NH” stand for the

number of positive/negative sequences in which there is a KMM hit.
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Data set: STAT1 _Unstimulated
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A summary of all de-novo found motifs for the STAT1_Unstimulated

dataset. “P”/“N” stand for the number of positive/negative sequences, “PH"/“NH”

stand for the number of positive/negative sequences in which there is a KMM hit
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