### **Supplemental Results**

#### Comparing our FMM Motif Finder to Other Available Motif Finders.

We sought to test our motif finder's performance versus other available motif finder software. A variety of such tools exists, and the question arises: What are the benefits of using our motif finder, as FMM motif models can be learned from aligned TFBSs that are extracted from the data by any other motif finder. As data, we chose most of the datasets described in Table 1: NRSF, CTCF, P53\_PET3, c-Myc\_PET3, Oct4\_Loh, Nanog\_Loh, Oct4\_Boyer, Nanog\_Boyer, Sox2\_Boyer. For each set, we used the 5-fold cross validation (CV) scheme that we used in section "Results: Learning TF Binding Specificities Features from Unaligned Human and Mouse TF Bound Regions".

For each dataset, we used the following protocol:

- (1) For each CV group, and for each motif finder: run with the training data as input, and acquire putative aligned TFBSs for the best motif.
- (2) For each CV group, and for each motif finder: learn both a FMM and a PSSM representation of the best motif, from the aligned TFBSs generated in step 1.
- (3) For each CV group, and for each motif finder: score each of the test sequences (positive and negative) by the log-likelihood of the best hit of the FMM in that sequence (*FMM\_score*), and similarly with the PSSM (*PSSM\_score*, so each sequence has two scores). (Repeat also for the train sequences).
- (4) For each CV group, and for each motif finder: rank all test sequences (positive and negative) by their *FMM\_score* (from highest to lowest). Using ROC (receiver operator characteristic) analysis, based on the above ranking, calculate the AUC (the area under the ROC curve), as a measure of how well the FMM discriminates the positive set from the negative set (an AUC of 0.5 is no better than random, the higher the AUC the better the discrimination). Call this AUC *FMM\_AUC* and use it as a score of the FMM. Similarly, calculate the *PSSM\_AUC*. (Repeat also for the train sequences).
- (5) For each motif finder other than our FMM motif finder: for each CV group, calculate the differences: "FMM\_AUC(FMM motif finder) FMM\_AUC(other motif

finder)", "PSSM\_AUC(FMM motif finder) - PSSM\_AUC(other motif finder)", "FMM\_AUC(FMM motif finder) - PSSM\_AUC(other motif finder)". Calculate the means and standard deviations of the above differences over the five CV groups. (Here the protocol ends).

To follow the above protocol, we sought to compare our motif finder to other motif finders that output aligned TFBSs (as required by step 1). Different motif finders may find motifs of different lengths, thus they cannot be compared directly based on the likelihood of their best hits (FMM score and PSSM score). Since we expect a true motif to discriminate between the positive and negative sets, we chose the AUC score as a basis for comparison. This score eliminates the fear of motif-length related bias in favor of any of the motif finders. As we used a discriminative score, and as our FMM motif finder is discriminative, we sought to test our motif finder also versus a discriminative motif finder. To meet the above, we compared our motif finder's performance with three other: AlignACE [1], MDscan [2] and DEME [3]. The first two are non discriminative, thus were run using only the positive training sequences sets as input. The last is a state-of-theart discriminative motif finder, thus received the negative training sequences sets as well (as did our own motif finder). The three motif finders were run with default parameters. MDscan and DEME require that the motif width be given as input. For that matter we used the lengths of the best motifs found by our motif finder for the datasets (see below in "Supplemental Results: De-Novo Motifs"). The comparison results are summarized in Figures S6-S8.

**Figure S6** shows the results when we compared PSSMs learned by our motif finder to PSSMs learned by the other tools. In a majority of the cases, our PSSMs were found to better represent the motif. This supports the claim that our motif finder does not produce aligned TFBSs that are wrongfully biased against the PSSM representation.

**Figure S7** shows the results when we compared FMMs learned by our motif finder to PSSMs learned by the other tools. In a majority of the cases our FMMs were found to better represent the motif. This supports our basic claim that producing FMM motif models using our motif finder has an advantage over the

PSSMs that other motif finders produce.

**Figure S8** shows the results when we compared FMMs learned by our motif finder to FMMs learned by the other tools. In a majority of cases our FMMs were found to better represent the motif. This demonstrates the advantage of using our motif finder in order to learn FMM motif models.

Figure S6



### Differences between AUC Scores of our PSSMs and the other motif finders

PSSMs. The means and the standard deviations (calculated over the five CV groups) of the difference between our PSSM AUC score and the other tool PSSM AUC score. The blue bars and error bars are for AUC scores based on the test data. The light green error bars are for AUC scores based on the train data.

Figure S7



# **PSSMs.** The means and the standard deviations (calculated over the five CV groups) of the difference between our FMM AUC score and the other tool PSSM AUC score. The blue bars and error bars are for AUC scores based on the test data. The light green error bars are for AUC scores based on the train data.

Figure S8



### Differences between AUC Scores of our FMMs and the other motif finders

FMMs. The means and the standard deviations (calculated over the five CV groups) of the difference between our FMM AUC score and the other tool FMM AUC score. The blue bars and error bars are for AUC scores based on the test data. The light green error bars are for AUC scores based on the train data.

Figure S2



Evaluation Of The L1 Penalty Term Free Parameter On Synthetic Data. FMM model performance in terms of the average test set likelihood on 8 synthetic data sets (sampled from the models in Figure 3) as a function of the number of data instances and the L1 penalty free parameter ( $\alpha$ ). We observed that the effect of the value of  $\alpha$  is, as predicted much stronger on small datasets. Where too small values of  $\alpha$  might not prevent overfitting (those resulting in low average test likelihood), too large values might pose to harsh restriction on the learned features. However relatively small values of  $\alpha$  ( $\alpha$ =1) have prevented overfitting for PSSM sampled datasets of size 1000. Base on this results we selected the value 1, which gave relatively good performances on all datasets, for our runs.

**De-Novo Motifs. Figures S9-S23** show a summery of the de-novo found motifs in the examined human and mouse data sets, which are described in **Table 1**.

Figure S9

|       |      |      |      | Γ    | Data set: c-My     | c                                                                    |     |
|-------|------|------|------|------|--------------------|----------------------------------------------------------------------|-----|
| Index | P    | РН   | N    | NH   | MHG P-val          | PSSM                                                                 | FMM |
| 1     | 3996 | 1487 | 7992 | 1072 | $10^{-189}$        | 2, 2, 4, 2, 2, 3, 2, 2, 3, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |     |
| 2     | 3996 | 711  | 7992 | 1014 | $3 \cdot 10^{-16}$ | 2                                                                    |     |
| 3     | 3996 | 547  | 7992 | 768  | $4 \cdot 10^{-15}$ | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                |     |
| 4     | 3996 | 338  | 7992 | 407  | $2 \cdot 10^{-14}$ | 2, y w 4 w p y p g g g g g g g g g g g g g g g g g                   |     |
| 5     | 3996 | 322  | 7992 | 390  | $10^{-12}$         | 2 N N N N N N N N N N N N N N N N N N N                              |     |

A summary of all de-novo found motifs for the c-Myc dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S10

|       | Data set: c-Myc_PET3 |     |      |     |                    |                                          |                                                     |  |  |  |
|-------|----------------------|-----|------|-----|--------------------|------------------------------------------|-----------------------------------------------------|--|--|--|
| Index | Р                    | PH  | N    | NH  | MHG P-val          | PSSM                                     | FMM                                                 |  |  |  |
| 1     | 528                  | 145 | 1056 | 69  | $10^{-30}$         | 2                                        | SECCACOTOS<br>E E E E E E E E E E E E E E E E E E E |  |  |  |
| 2     | 528                  | 243 | 1056 | 298 | $10^{-19}$         | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2 |                                                     |  |  |  |
| 3     | 528                  | 351 | 1056 | 537 | $2 \cdot 10^{-13}$ |                                          |                                                     |  |  |  |
| 4     | 528                  | 232 | 1056 | 364 | $5\cdot 10^{-13}$  | 2 CC V C S S S S S S S S S S S S S S S S | SCCOOLS<br>CCCOOLS                                  |  |  |  |
| 5     | 528                  | 72  | 1056 | 45  | $3 \cdot 10^{-11}$ | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2    |                                                     |  |  |  |

A summary of all de-novo found motifs for the c-Myc\_PET3 dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S11

|       |       |       |       | Dat   | a set: CTCF |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     |
|-------|-------|-------|-------|-------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| Index | P     | PH    | N     | NH    | MHG P-val   | PSSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FMM                                                                 |
| mdex  | Г     | LII   | 11    | 1/11  | MIIIG F-vai |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T. IVIIVI                                                           |
| 1     | 13721 | 8235  | 27442 | 4750  | $\sim 0$    | SOLUTION OF THE PROPERTY OF TH | ZACCASTALVATULASESE<br>CACCASTALVATULASESES<br>CACCASTALVATULASESES |
|       |       |       |       |       |             | 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |
| 2     | 13721 | 4257  | 27442 | 4445  | $10^{-265}$ | 2, 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     |
|       |       |       |       |       |             | 2 TTUG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ETT CGG                                                             |
| 3     | 13721 | 10370 | 27442 | 16953 | $10^{-248}$ | 5′ 7 8 7 5 2′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>E</b>                                                            |
| 4     | 13721 | 7907  | 27442 | 11925 | -172        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GCTCCCT<br>E                                                        |
| 5     | 13721 | 3031  | 27442 | 3481  | $10^{-131}$ | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CCCCTCC                                                             |

A summary of all de-novo found motifs for the CTCF dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S12

|       | Data set: E2F4_Boyer |     |     |     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |  |  |
|-------|----------------------|-----|-----|-----|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--|--|--|--|
| Index | Р                    | PH  | N   | NH  | MHG P-val   | PSSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FMM           |  |  |  |  |
| 1     | 956                  | 891 | 956 | 298 | $10^{-231}$ | 0 - N 6 + 6 0 N 8 0 0 C R 2 2 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FFICCOCEFFFFF |  |  |  |  |
| 2     | 956                  | 886 | 956 | 617 | $10^{-81}$  | ST TO THE PARTY OF | ETC GAG       |  |  |  |  |
| 3     | 956                  | 463 | 956 | 175 | $10^{-47}$  | 2 N N N A N N N A N N N N N N N N N N N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |  |  |  |  |
| 4     | 956                  | 441 | 956 | 217 | $10^{-39}$  | 2 S S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               |  |  |  |  |
| 5     | 956                  | 226 | 956 | 69  | $10^{-24}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |  |  |  |  |

A summary of all de-novo found motifs for the E2F4\_Boyer dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S13

|       |      |      |      | Data | set: NANOG_l | Boyer                                                                                            |                                             |
|-------|------|------|------|------|--------------|--------------------------------------------------------------------------------------------------|---------------------------------------------|
| Index | Р    | PH   | N    | NH   | MHG P-val    | PSSM                                                                                             | FMM                                         |
| 1     | 1552 | 164  | 3104 | 4    | $10^{-74}$   | 2- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                           | TêÇÇÇEÊÊÎTACCO<br>CO<br>C C<br>C C          |
| 2     | 1552 | 1188 | 3104 | 1804 | $10^{-49}$   | 5 - Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q                                                          | SCATTCASS<br>CCAAAAAAAAAAAAAAAAAAAAAAAAAAAA |
| 3     | 1552 | 551  | 3104 | 578  | $10^{-44}$   | 2-<br>                                                                                           |                                             |
| 4     | 1552 | 739  | 3104 | 1039 | $10^{-25}$   | 2<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                  | EATTLCCAL<br>ATTLCCAL<br>ATTLCCAL           |
| 5     | 1552 | 501  | 3104 | 659  | $10^{-17}$   | 2<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | EAACGCAGEE                                  |

# A summary of all de-novo found motifs for the NANOG\_Boyer dataset.

"P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S14

|       | Data set: NANOG_Loh |      |      |      |             |                                                                                                  |                     |  |  |  |  |  |
|-------|---------------------|------|------|------|-------------|--------------------------------------------------------------------------------------------------|---------------------|--|--|--|--|--|
| Index | P                   | PH   | N    | NH   | MHG P-val   | PSSM                                                                                             | FMM                 |  |  |  |  |  |
| 1     | 2823                | 1250 | 5646 | 1245 | $10^{-109}$ | 2<br>2<br>2<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>1<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3<br>3 | ACAAAAGE<br>AAG     |  |  |  |  |  |
| 2     | 2823                | 441  | 5646 | 263  | $10^{-62}$  | 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2                                                         |                     |  |  |  |  |  |
| 3     | 2823                | 606  | 5646 | 579  | $10^{-43}$  | 2<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                  | E TO A COLOR        |  |  |  |  |  |
| 4     | 2823                | 88   | 5646 | 0    | $10^{-42}$  | 2, - 2 & 4 & 8 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5                                               |                     |  |  |  |  |  |
| 5     | 2823                | 1569 | 5646 | 2393 | $10^{-41}$  | 2<br>2<br>2<br>3<br>1<br>2<br>3<br>1<br>3<br>3<br>5                                              | ACGAATCC<br>T T T T |  |  |  |  |  |

A summary of all de-novo found motifs for the NANOG\_Loh dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S15

|       |      |      |      | ]   | Data set: NRS      | F                                                                                                |                        |
|-------|------|------|------|-----|--------------------|--------------------------------------------------------------------------------------------------|------------------------|
| Index | Р    | PH   | N    | NH  | MHG P-val          | PSSM                                                                                             | FMM                    |
| 1     | 1872 | 1630 | 3744 | 358 | $\sim 0$           | 2<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | FITCAGEACCERGACAGE FEE |
| 2     | 1872 | 245  | 3744 | 195 | $10^{-23}$         | 2, 2 2 4 8 8 7 7 9 0 0 3, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                  |                        |
| 3     | 1872 | 63   | 3744 | 10  | $10^{-20}$         | 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                          |                        |
| 4     | 1872 | 138  | 3744 | 119 | $2 \cdot 10^{-12}$ | 2 N N N N N N N N N N N N N N N N N N N                                                          |                        |
| 5     | 1872 | 198  | 3744 | 212 | $6 \cdot 10^{-12}$ | 2 2 2 8 4 10 10 10 10 10 10 10 10 10 10 10 10 10                                                 | COACAGO                |

A summary of all de-novo found motifs for the NRSF dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S16

|       |     |     |      | Da  | ta set: OCT4_      | Boyer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                       |
|-------|-----|-----|------|-----|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Index | Р   | PH  | N    | NH  | MHG P-val          | PSSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | FMM                                                   |
| 1     | 603 | 349 | 1206 | 327 | $10^{-40}$         | 2<br>2<br>3<br>1<br>0<br>7<br>0<br>7<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ESTITICATIAS AS<br>TITICATAS AS<br>TITICATAS AS<br>AA |
| 2     | 603 | 521 | 1206 | 884 | $2 \cdot 10^{-14}$ | 2 C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |
| 3     | 603 | 22  | 1206 | 0   | $3 \cdot 10^{-11}$ | Description of the property of |                                                       |
| 4     | 603 | 64  | 1206 | 46  | $6 \cdot 10^{-9}$  | 2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AACAATAGE<br>A CAATAGE                                |
| 5     | 603 | 219 | 1206 | 316 | $2 \cdot 10^{-6}$  | 2, E M W 4 W D V W B B B 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                       |

A summary of all de-novo found motifs for the OCT4\_Boyer dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S17

|       | Data set: OCT4_Loh |     |      |      |                    |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|-------|--------------------|-----|------|------|--------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Index | Р                  | РН  | N    | NH   | MHG P-val          | PSSM                                      | FMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |
| 1     | 968                | 517 | 1936 | 474  | $10^{-58}$         | 5, 40 0 4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 | TIGTENT CAAAI TIGTE CAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |
| 2     | 968                | 696 | 1936 | 997  | $10^{-28}$         | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2     | SECTOR OF THE PROPERTY OF THE |  |  |  |
| 3     | 968                | 437 | 1936 | 536  | $10^{-23}$         | 5, - N W 4 W D N W 6 B B 3,               | ACAAACCCA<br>AAAAAAAAAAAAAAAAAAAAAAAAAAAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 4     | 968                | 714 | 1936 | 1242 | $4 \cdot 10^{-14}$ | 2 C S S S S S S S S S S S S S S S S S S   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| 5     | 968                | 291 | 1936 | 383  | $6 \cdot 10^{-11}$ | 2 N N 4 N N N N N N N N N N N N N N N N   | SCCCAGG<br>A G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |

A summary of all de-novo found motifs for the OCT4\_Loh dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S18

|       | Data set: P53 |     |      |     |                    |                                                 |                               |  |  |  |  |
|-------|---------------|-----|------|-----|--------------------|-------------------------------------------------|-------------------------------|--|--|--|--|
| Index | P             | PH  | N    | NH  | MHG P-val          | PSSM                                            | FMM                           |  |  |  |  |
| 1     | 503           | 433 | 1006 | 163 | $10^{-164}$        | 2 - 2 2 4 6 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 |                               |  |  |  |  |
| 2     | 503           | 194 | 1006 | 198 | $10^{-20}$         | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5         |                               |  |  |  |  |
| 3     | 503           | 115 | 1006 | 88  | $10^{-18}$         | 2 N W 4 W W 7 W W 5 E 3'                        | STTACCOATE<br>TTACCOATE<br>AT |  |  |  |  |
| 4     | 503           | 130 | 1006 | 134 | $3 \cdot 10^{-14}$ | 5, L S S S S S S S S S S S S S S S S S S        | GAACAAAGGAA<br>GA             |  |  |  |  |
| 5     | 503           | 95  | 1006 | 94  | $5 \cdot 10^{-9}$  | 2, c u u u u u u u u u u u u u u u u u u        |                               |  |  |  |  |

A summary of all de-novo found motifs for the P53 dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S19

|       | Data set: P53_PET3 |     |     |     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
|-------|--------------------|-----|-----|-----|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Index | P                  | PH  | N   | NH  | MHG P-val          | PSSM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 1     | 300                | 228 | 600 | 66  | $10^{-87}$         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CAGA CATCOCA<br>CAGA CATCOCA<br>CAGA CATCOCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 2     | 300                | 86  | 600 | 2   | $10^{-41}$         | E TO THE STATE OF | \$\$\$ACATGCC\$\$ACATGCC\$\$  \$\hat{A}  \text{CC\$} \hat{A}  \text{CC\$} \hat{A}  \text{CC\$} \hat{A}  \text{CC\$} \hat{A}  \text{CC\$} \hat{A}  \text{CC}  \text{CC} \hat{A}  \text{CC}  \text{CC} \hat{A}  \text{CC}  \text{CC} \hat{A}  \text{CC}  \text{CC}  \text{CC}  \text{CC}  \text{CC}  \te |  |  |  |  |
| 3     | 300                | 64  | 600 | 51  | $2 \cdot 10^{-10}$ | 2 N S S S S S S S S S S S S S S S S S S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CITATOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
| 4     | 300                | 99  | 600 | 114 | $10^{-10}$         | 5, N W 4 W W P W W B 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GANCAAA GA<br>AAAAAAA GA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
| 5     | 300                | 66  | 600 | 49  | $2\cdot 10^{-9}$   | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CCTTACTO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |

A summary of all de-novo found motifs for the P53\_PET3 dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S20

|       |      |      |      | Doto | got, DDC2 CI | T <b>7</b> 19                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|------|------|------|--------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |      |      |      |      | set: PRC2_SU |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Index | P    | PH   | N    | NH   | MHG P-val    | PSSM                                  | FMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1     | 2905 | 2315 | 2905 | 971  | $10^{-317}$  | GCC GCCC GCCC STREET STREET ST        | \$\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac{2}{5}\frac |
| 2     | 2905 | 2162 | 2905 | 1428 | $10^{-120}$  |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3     | 2905 | 991  | 2905 | 497  | $10^{-53}$   | 2                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4     | 2905 | 428  | 2905 | 154  | $10^{-34}$   | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

A summary of all de-novo found motifs for the PRC2\_SUZ12 dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S21

| Data set: SOX2_Boyer |      |     |      |      |                    |                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------|------|-----|------|------|--------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Index                | Р    | PH  | N    | NH   | MHG P-val          | PSSM                                                        | FMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1                    | 1165 | 686 | 2330 | 678  | $10^{-72}$         | 2 CCA CCA CCA CCA CCA CCA CCA CCA CCA CC                    | ECCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTEE<br>CCATTGTTEE<br>CCATTGTTEE<br>CCATTGTTEE<br>CCATTGTTEE<br>CCATTGTTEE<br>CCATTGTTEE<br>CCAT |
| 2                    | 1165 | 600 | 2330 | 831  | $10^{-25}$         | 20 CC 4 CC 2 CC 2 CC 2 CC 2 CC 2 CC 2 CC                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3                    | 1165 | 354 | 2330 | 390  | $10^{-22}$         | 2 2 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                 | AATGCAAATEA<br>Tarana                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 4                    | 1165 | 739 | 2330 | 1189 | $10^{-14}$         | 2 N 4 N 2 N 2 N 3 N 2 N 3 N 3 N 3 N 3 N 3 N 3               | ASA AA GAASA SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 5                    | 1165 | 149 | 2330 | 130  | $2 \cdot 10^{-13}$ | 2<br>2<br>3<br>5, C N W & W N N N N N N N N N N N N N N N N |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

A summary of all de-novo found motifs for the SOX2\_Boyer dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S22

|       | Data set: STAT1_IFNg |      |       |      |             |                                                                 |      |  |
|-------|----------------------|------|-------|------|-------------|-----------------------------------------------------------------|------|--|
| Index | Р                    | PH   | N     | NH   | MHG P-val   | PSSM                                                            | FMM  |  |
| 1     | 15000                | 4392 | 15000 | 1895 | 10-303      | 2, 1 2 8 4 8 8 7 8 3, 2 4 8 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 |      |  |
| 2     | 15000                | 4347 | 15000 | 2055 | $10^{-289}$ | 2- 2 C C C C C C C C C C C C C C C C C C                        |      |  |
| 3     | 15000                | 2265 | 15000 | 601  | $10^{-252}$ | 27 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                        | T TA |  |
| 4     | 15000                | 3425 | 15000 | 1913 | $10^{-123}$ | 2,                                                              |      |  |
| 5     | 15000                | 2074 | 15000 | 1179 | $10^{-64}$  | 2, c s 4 % 8 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6 % 6                |      |  |
| 6     | 15000                | 868  | 15000 | 378  | $10^{-47}$  | 2, 2 8 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                      |      |  |

A summary of all de-novo found motifs for the STAT1\_IFNg dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit.

Figure S23

| Data set: STAT1_Unstimulated |       |      |       |      |             |                                                                           |                              |
|------------------------------|-------|------|-------|------|-------------|---------------------------------------------------------------------------|------------------------------|
| Index                        | Р     | PH   | N     | NH   | MHG P-val   | PSSM                                                                      | FMM                          |
| 1                            | 11004 | 4581 | 22008 | 3745 | ~ 0         | 2<br>2<br>3<br>1-<br>0-200 TO 200 Sec. Sec. Sec. Sec. Sec. Sec. Sec. Sec. |                              |
| 2                            | 11004 | 1390 | 22008 | 691  | $10^{-253}$ | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                     | CACTIT CCCGC<br>CACTIT CCCGC |
| 3                            | 11004 | 2074 | 22008 | 1747 | $10^{-196}$ | 2                                                                         |                              |
| 4                            | 11004 | 933  | 22008 | 689  | $10^{-94}$  | 2, L 2 & 4 & 5 & 7 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2                    |                              |

A summary of all de-novo found motifs for the STAT1\_Unstimulated dataset. "P"/"N" stand for the number of positive/negative sequences, "PH"/"NH" stand for the number of positive/negative sequences in which there is a KMM hit

## References

- 1. Hughes JD, Estep PW, Tavazoie S, Church GM (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296(5): 1205-1214.
- 2. Liu XS, Brutlag DL, Liu JS (2002) An algorithm for finding protein-DNA binding sites with applications to chromatin-immunoprecipitation microarray experiments. Nature Biotechnology 20: 835-839.
- 3. Redhead E, Bailey TL (2007) Discriminative motif discovery in DNA and protein sequences using the DEME algorithm. BMC Bioinformatics 8: 385-403.