
1 The Cellular Potts Model

1.1 Introduction

In this exercise you will experiment with Glazier and Graner’s Cellular Potts
model [1], which they originally developed to study the differential-adhesion
hypothesis (DAH) [2]. The DAH states that tissues self-organize as a result of
their adhesive properties.

The CPM represents biological cells as patches of lattice sites, ~x, with iden-
tical indices σ(~x), where each index identifies, or “labels” a single biological cell.
Connections between neighboring lattice sites of unlike index σ(~x) 6= σ(~x′) rep-
resent membrane bonds, with a characteristic bond energy Jτ(σ~x),τ(σ~x′ ), where
the cell types τ (i.e. endothelial, epidermal, etc.) determine the adhesion
strength of the interacting cells. An energy penalty increasing with the cell’s
deviation from a designated target volume Aσ imposes a volume constraint on
the biological cells.

We collect these effective energies in a Hamiltonian,

H =
∑
~x,~x′

Jτ(σ~x),τ(σ~x′ )(1− δσ~x,σ~x′ ) + λ
∑

σ

(aσ −Aσ)2, (1)

where λ represents resistance to compression, aσ is the current cell volume,
and the Kronecker delta is δx,y = {1, x = y; 0, x 6= y}. The cells reside in a
“medium” which is a generalized CPM cell without a volume constraint and
with σ = 0, and τ = 0.

To mimic cytoskeletally-driven membrane fluctuations, we randomly choose
a lattice site, ~x, and attempt to copy its index σ~x into a randomly chosen neigh-
boring lattice site ~x′. We often use the eight, first and second order neighbors,
but we can reduce the effects of lattice anisotropy by using the twenty, first- to
fourth-order neighbors on a square lattice (in the parameter file you can change
this behavior by using neighbors = 2 or neighbors = 3 respectively). On
average, we attempt an update at each lattice site once per Monte-Carlo step
(MCS). We calculate how much the energy would change if we performed the
copy, and accept the attempt with probability:

P (∆H) = {exp(−(∆H + H0)/T ),∆H ≥ −H0; 1,∆H < −H0}, (2)

where H0 >= 0 is an energy threshold which models viscous dissipation and
energy loss during bond breakage and formation[3].

The cells’ adhesivities are expressed in terms of the bond energies Jτ(σ~x),τ(σ~x′ ),
where high J-values imply low adhesivity and vice versa. It is convenient to de-
scribe the parameters in terms of the surface tensions γτ1,τ2 = Jτ1,τ2 − (Jτ1,τ1 +
Jτ2,τ2)/2, which enable us to determine whether energetics favors homotypic
(γτ1,τ2 > 0) or heterotypic bonds (γτ1,τ2 < 0) [1].
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1.2 How to use the CPM software

The program sorting implements the basic Cellular Potts algorithm with two
cell types. Used with the parameter file sorting.par the simulation initializes
with a blob of cells to which the program assigns a random type 1 (red) or 2
(yellow).

Start the program by typing

sorting sorting.par

in a terminal or DOS-box. A window will appear with the initial cluster, which
slowly disintegrates.

Now try to change the parameters in order to get the cells to sort out, to mix,
and one type to engulf the other. To do so, first make a copy of the file J.dat,
by typing:

copy Jnoadhesion.dat myJ.dat

or (for Linux)

cp Jnoadhesion.dat myJ.dat

in a terminal or DOS-box.

Now open the file sorting.dat in a text editor (e.g. notepad) and change the
line:

Jtable = Jnoadhesion.dat

to

Jtable = myJ.dat

Then open the file myJ.dat. It will look something like this:

3
0
20 40
20 40 40

The file describes the diagonal matrix J; the first line is number of cell types, 3.
That is two cell types plus one for the ECM.
The second line gives JM,M, the adhesion energy between “medium cells”. Since
we only have one medium “cell”, this value is 0 by definition. The next line
describes the adhesivities of cell type 1. The first number is its adhesion energy
to the medium, JM,1, the second the adhesion energy to cells of its own type,
J1,1. Similarly, the fourth line gives JM,2, J1,2 and J2,2.
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1.3 Exercises

1.3.1 Sorting it out

Change the J’s to get cell sorting, cell mixing, and engulfment, respectively, and
give the corresponding values of γ. Note that the values of J are integers, so
make sure your value of J differ sufficiently; choosing them in the range 1..50
would be a good bet.

1.3.2 Wild cells, quiet cells; small cells, big cells

Also try experimenting with the values of the temperature T , A (target area),
and λ (lambda). How does the simulation respond to these changes? Does this
meet your expectations? Can you philosophize to which biological or physical
parameters these parameters would correspond?

2 Vasculogenesis modeling with the CPM

2.1 Introduction

In these exercises we will model different mechanisms of angiogenesis using the
cellular Potts model. To do so, we need a partial differential equation layer to
simulate the diffusion and decay of chemoattractants (e.g. VEGF-isoforms) in
the ECM; also the CPM must be able to secrete chemicals into the ECM.

Our initial cell-centered model of vasculogenesis implements the basic as-
sumption of the Gamba and Serini model [4, 5]: ECs migrate towards the
chemoattract they themselves secrete. We use the basic CPM, and add a PDE
layer which describes the diffusion and secretion of the chemoattractant in the
uniform substrate underlying the cells:

∂c

∂t
= α δσ~x,0 − (1− δσ~x,0)ε c + D∇2c, (3)

where δσ~x,0 = 1 inside the cells. α is the rate at which the cells release chemoat-
tractant, ε is the decay rate of the chemoattractant, and D is the diffusion
coefficient of the chemoattractant. Every site within the CPM cells secretes
the chemoattractant, which only decays in the substrate. We solve this PDE
numerically using a finite-difference scheme (forward Euler) on a lattice that
matches the CPM lattice, using 15 diffusion steps per MCS. For these param-
eters, the chemoattractant diffuses more rapidly than the cells, enabling us to
ignore advection as the cells push the substrate forward.

We implement preferential extension of filopodia in the direction of chemoat-
tractant gradients — which drives chemotaxis — by allowing for an extra energy
drop at the time of copying [6]:

∆Hchemotaxis = −µ(c(~x′)− c(~x)), (4)
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where ~x′ is the neighbor into which site ~x copies its spin, and µ = 500 and µ = 0
at cell-substrate and cell-cell interfaces respectively. We use a value of µ = 500
to obtain sufficient chemotactic migration. In our initial simulations the cells
do not adhere without chemotaxis (Jcc = 2JcM ).

2.2 Chemotaxis to autocrinically secreted factors

Start up a Cellular Potts simulation with the parameter file chemotaxis.par,
by typing on the commandline:

vessel chemotaxis.par

As in the PDE model by Gamba et al., the cells secrete a chemoattractant
(shown in grey and with the green concentration isolines), and move towards
higher concentrations of the attractant.

What patterns do you see? Does this meet your expectations, based on what
you know from the Gamba-Serini continuum model?

Now experiment with the parameters, including the decay rate of the chemoat-
tractant (decay rate), the diffusion coefficient (diff coeff), and the number
and size of the cells (n init cells, target area. You can do so by editing the
parameter file. What determines the size of the cell clusters?
First, copy chemotaxis.par, by typing:

cp chemotaxis.par vasculogenesis.par

Edit the copy of the parameter file with an editor, e.g. notepad.
Restart your simulation with:

vessel vasculogenesis.par

For some parameters (e.g. high diffusion coefficients) the diffusion algorithm
will become numerically unstable; in those cases you can experiment with the
number and size of PDE steps carried out after each Monte Carlo Step, using
parameters dt and pde its.

2.3 Making vascular networks

In the lectures we have discussed several mechanisms that help form vascular
networks, including cell elongation and contact-inhibition of motility.

To mimic cell elongation due to cytoskeletal remodeling we add a cell- length
constraint to the free energy:

H ′ = H + λL

∑
σ

(lσ − Lσ)2, (5)

where lσ is the length of cell along its longest axis, Lσ its target length, and λL

is the strength of the length constraint. Assuming that cells are ellipses, we can
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derive their length from the largest eigenvalue of their inertia tensor I [7, 8].
The length constraint could cause cells to split into disconnected patches. We
prevent this artifact by introducing a connectivity constraint, which reflects the
physical continuity and cohesion of the actual cell [8].

2.3.1 Cell elongation

Start from a clean parameter file, by copying chemotaxis.par and editing the
copy. Then play with the target length (L); a good value to start with would
be target length = 60 (L = 120 µm, if dx=2.0e-6).

What happens? How are the cells organized? What seems to be the main
driving force behind this mechanism?

Also try experimenting with small numbers of cells, say n init cells = 10.
What happens to the polygonal pattern over time? If you are patient, you
might also be interested in trying larger fields sizex = 500 and sizey = 500.
A useful parameter to change is also subfield; if you set this to 1.5 the cells
will be distributed in a small space in the center of the field so the network has
sufficient space to expand.

2.3.2 Passive cell shape changes

Again start from a clean copy of chemotaxis.par, and try experimenting with
the cell adhesion between endothelial cells as we did in exercise 1. To do so,
change the value of Jtable in your parameter file (Jtable = adhesiveJ.dat).
In this parameter file Jcc = 1 and JcM = 20.

What do you see? Is this what you expected?

Now, release the shape constraint from the endothelial cells, by setting lambda2 =
0.0, and run a new simulation. You might also want to use small target areas
and use sm

What happens? What could be responsible for the change you see?

Go back to neutral cell adhesion settings (Jcc = 40, JcM = 20), by setting
Jtable = J.dat. Then experiment with the width of chemoattractant gradi-
ents (how would you do that?): do you notice any changes in the resulting
patterns?

What is responsible for these (putative) vasculogenesis mechanisms? For
further reading, see [9, 8].
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2.3.3 Contact-inhibition of motility

Start with a clean copy of chemotaxis.par, in which the cell shape is con-
strained lambda2 = 5.0. Now, set parameter vecadherinknockout to false.
As a result, we have turned off chemotaxis at cellular interfaces (we hypothesize
that phosphorylation of VEGFR-2 receptors by vascular-endothelial cadherin
causes such contact-inhibition of chemotaxis); the cells are only sensitive to the
chemoattractant at cell-ECM interfaces.

What happens? Can you explain the resulting behavior?

Parameter file contactinhibition.par initializes the the simulation with a cell
spheroid instead of dispersed cells. Run the simulation with the same parame-
ters.

What happens? Do your observations help explain the role of contact-inhibition
in vasculogenesis (see also [10]).
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