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1. Noise calculation

We use a Langevin approach to study noise. We first solve the system of
equations linearized around the steady state in the frequency domain, and then calculate
the PSD (power spectrum density) of each species. The energy theorem enables us to
calculate the variance of each species in the temporal domain by integrating the PSDs in
the frequency domain.

1.1 Linearization
Langevin equations for the systems are:
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The random timing and discrete nature of chemical reactions generate intrinsic
noise sources. ¢, represents each intrinsic noise source associated with a reaction /

(Table S1). &, (m = A;, R and C)is the extrinsic noise source in each species. To be
consistent with the main text we have,
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Excluding extrinsic noise terms, our model formulation is equivalent to the
standard chemical Langevin equation [1].



The system is monostable. We denote the steady state values of A;, Ae, R and C as
A*, A, R* and C*, respectively. We linearize the model Eq. (1) around the steady

states by using

A=A+AA,
A= A" +0A,
R=R* + AR,
C=C®*+AC.

At the steady state, each noise process can be considered as a stationary process.
The linearization gives

dA ss ss A A
d—?:_yAiAAi — ke, R7AA =k APAR + k¢, AC — P(Té_V_?J
+O+ O+ GHE G,
dA A A
_df% :_7AGAA\9_P[V_A\E_TAJ_§S+§6’ 2)
dAR SS SS
F=_yRAR_kC1R AA =K A*AR + Kk, AC + &+ &, + &0 + & + &,
dAC Ss SS
g = 7eAC K RTAA +ho ATAR ke, AC =& =G+ G e

1.2 PSD calculation

Here, we focus on solving noise for the complex (C). The same scheme applies to
other species as well. Suppose the noise process is observed over the interval

[—T/2,T/2] and its Fourier transformation of Eq. (2) exists. Taking the Fourier
transformation and solving for AC give;

AC(F)= Hi(F)S.(F)+ 2 Ha(F)G.(F),

where hats denote variables evaluated in the frequency domain (f represents ordinary
frequency); HS and H: are frequency domain transfer functions for intrinsic and

extrinsic noise sources.

Unilateral PSD of AC (Sac) can be calculated as
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where bars denote ensemble average. The statistical properties of intrinsic noise sources
are:
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k=1,..,9),

where Vv, is an average reaction rate of the corresponding reaction at the steady state as
summarized in the Table below, o(r) is the Dirac’s delta function, and &, is the

Kronecker's delta function.

Noise source | Reaction Average reaction rate (V, )
¢ AHL production K,

¢, Internal AHL (A)) decay ya A

¢, Complex association ke, A*R®

¢, Complex dissociation ke,C* ke C**

¢s Diffusion PIAS N, - AS N,

S External AHL (A¢) decay | 7a A

¢ LuxR production K

Cs LuxR decay 7sR%

Co Complex decay 7.C*

In the base model, we assume that all extrinsic noise sources are fully correlated
(&a / a, =&yfag =& /ac =&, where a, determines the relative strength of each

extrinsic noise sources), and the spectrum is white. Then, we have

(€)=0,

5
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where £ is the effective magnitude of the extrinsic noise source. Under these conditions
(Egs. (4) and (5)), Eq. (3) becomes:
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where S¢ and S° denote PSD of intrinsic and extrinsic noise sources.

Egs. (4) and (5) lead to S{ =2v, and S° =24 If all extrinsic noise sources have

the same magnitude (@, = az = o =1), we have
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where H* =Zeri.

1.3 Noise calculation by the energy theorem

For the gated noise processes X(t) (noise processes observed over the finite time
interval [—T/ 2,T/ 2], where X(t) = 0 outside of this interval), the energy theorem states
that
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The right hand side uses the relationship: f |X(f)|2df = J:O 2|52(f)|2df . This is

possible because, as X(t) is a real process, the integrand is an even function. Taking the
ensemble average of both sides of Eq. (8) gives

o +(x()f = ["s,(f)df, 9)

where o is the variance of X(t).



By using Eq. (9), the variance of C is calculated as
ol +(ACM) =02 = [ "8, (F)df .

Also, we can see from Eq. (6) that
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where 77,7, and n; are the total noise, intrinsic noise and extrinsic noise, respectively.

2. Impact of the dimerization of the complex

In this section, we incorporate the homodimerization of C into a dimer (D) and
examine how the noise in D changes depending on different P and y using the same
analytical approach described above. The system now becomes
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where K, and K, are association and dissociation rate constants of D; £, ¢}, and &,
are intrinsic noise sources originating from dimer association, dissociation and decay; and
&p 1s an extrinsic noise sources for D. We set K, and K, to be the same as k;, and k., ,

respectively. We also assume that all extrinsic noise sources are correlated and of the
same magnitudes. As shown in Figure S1, extrinsic noise in D and the gain of the transfer



function exhibit qualitatively the same dependence on P and y; as noise in C without
dimerization (Figure 2 and 3).

3. Effects of population size on noise attenuation

Figure S2 shows numeric simulations of noise in A;, Ae, R and C when the system
contains multiple cells coupled by quorum sensing signal. Simulations are performed for
the following conditions:

1) Each cell has its own microenvironment (e.g. no coupling).

2) 100 cells are divided into ten populations, each of which contains ten cells
coupled to one another via a common environment.

3) 100 cells form 1 population of 100 coupled cells.

In each case, the cell density is kept constant. Essentially, case 1 has no coupling
between cells and case 3 has the strongest. If the coupling plays a significant role in
reducing cellular noise, we would expect the least variability in case 3 and the most in
case 1.

However, numerical simulations indicate no significant change of noise in A;, R
and C in the population from 1 to 100 (<2 %). In contrast, noise in A¢ is reduced by >80
% while its absolute value of noise is >100 fold smaller than A;, R and C. In Figure S2,
we use a diffusion rate constant of 2x10™° L min™ and the similar result is obtained with
a slower diffusion rate constant of 2x10™"°> L min” (data not shown). Thus, the noise
reduction in A, has little impact on noise in C. Also, as discussed in the main text, the fast
turnover of the signal plays a major role in noise attenuation of C, and coupling of a cell
with its extracellular environment but not with multiple cells is sufficient to achieve the
fast signal turnover via diffusion. These results support that noise calculation in a single
cell model is sufficient to examine the noise characteristics.

4. Intrinsic noise dependence

As mentioned in the main text, the total intrinsic noise does not change
significantly when diffusion and R decay rates are modulated. However, individual
indeed varies with these parameters, but they cancel out each other. Figure S3 shows how
the PSD of each intrinsic noise source depends on diffusion rates. The same trend is
observed when the R decay rate is varied (data not shown).

5. Parameters and sensitivity analysis

Parameters for the model are obtained from experimental measurements found in
the literature or estimated based on the observed biological behavior of the system (Table

S2). We also test if noise modulation of C by P and y; is sensitive to the choice of other



parameters, including k,, k5, VasVasVrs Ve ke, and k., . Except for k,, each of these
parameters is decreased and increased by 10 fold while the other parameters are held
constant. K, is only increased by 10 fold because the steady state value of A;j becomes
less than 1 when Kk, is decreased by 10 fold.

As shown in Figure S4, in general, the total noise in C decreases as P or yg
increases. Exceptions are when K is increased and y, is decreased (Figure S4A, K, %10
and y,/10, respectively). In the K, x10 case, when P is increased from 2x10™" to 2x10™"!
L min™, the total noise in C increases slightly. This increase is primarily due to the
increase in the intrinsic noise (Figure S4C). In K x10 case, the intrinsic noise becomes

comparable to extrinsic noise especially for fast diffusion (Figure S4B and C). However,
we note that extrinsic noise consistently decreases with increasing P and the dynamic
range of extrinsic noise is ~20 fold larger than that of intrinsic noise. This is also true for

the y; /10 case. Therefore, we conclude that the qualitative behavior of extrinsic noise is

insensitive to the base parameter sets, and as long as extrinsic noise dominates total noise,
the behavior of total noise is also insensitive.

6. Various correlation of extrinsic noise sources

In the previous sections, we assumed that the extrinsic noise sources (&, , &; and

&) are fully correlated with one another. This condition is not necessarily satisfied in a

real biological system. Here, we consider the general case where the extrinsic noise
sources are correlated to varying extent or not correlated.

Assuming that extrinsic noise sources are uncorrelated with intrinsic noise
sources, PSD of extrinsic noise in C (S,¢_) can be written as
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where S, (m=m') is a cross-spectral density and * denotes complex conjugate.

When extrinsic noise sources are correlated only at simultaneous time points (i.e.
<§m S, (t+ T)> =R, .,O0(7), where R_ . is a constant),
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is the correlation coefficient between & and &, (I, =l )-

If all extrinsic noise sources have the same magnitude (i.e. «,, =1), we obtain
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o = [ 2RHEHETAE (note RIHZHE 1= RHEHED). As

25 / (C*)? is constant, the dependence of X and Y, . on P and y, directly reflects the
dependence of 7¢ . The term X, + X, + X, represents the contribution of extrinsic noise

sources as independent entities and reflects a basal dependence of né . Y, TEPLEsents
the contribution of correlation between two extrinsic noise sources, &, and &_. .

The combination of r,z, I, and Iy, has a constraint (in addition to —1<r . <1)

and cannot be completely arbitrary. Partial correlation of & and &; given & (1, ) is
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Since —1<r;, <1, we have
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Thus, we obtain the range of r;; as a function of r;;, and ry,
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6.1 Uncorrelated Extrinsic Noise Sources
When extrinsic noise sources are uncorrelated (i.e. Iy =l =l =0), only the

X+ Xg + X term (Eq. (10)) matters. As shown in Figure SS5A, X, + X + X shows

qualitatively the same dependence as the case with fully correlated extrinsic noise sources
(i.e. Iy =l =Tlye =1). It decreases with increasing P and y; .

6.2 Arbitrarily Correlated Extrinsic Noise Sources
If extrinsic noise sources are correlated, Y, .’s terms contribute to 77 . Figure

S5B-D show Y, as a function of P and y; calculated with base parameter values
(Table S2), as also summarized below:

Direction Y g Yac Yrc

Monotonic increase or
Increasing P | Monotonic decrease | Monotonic decrease | decrease depending on
VR

. Non-monotonic .. )
Increasing yq change Monotonic increase Monotonic decrease

We note that the dependence of Y,; and Y,. on y, and the dependence of Y,. on
P are negligible in comparison to that of X, + X; + X, on these parameters. Thus, they

do not affect the overall dependence of 72 on y, and P.

Since the dependence of Y,; and Y,. on P and that of Y. on y, have the same
trend as X, + X, + X, we expect 77 to monotonically decrease with increasing P and
7r 1f extrinsic noise sources are all positively correlated (I, ’s > 0). In contrast, when
I values are negative, increasing P and y, may increase r,..Y, . . To systematically
examine the effect of arbitrary correlations of extrinsic noise sources, we use the
following metrics:
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where 72(P..., am. ) means 72 evaluated at P=P_ and yy=ys.. , and P, = 2x107"°

n

Lmin”, P, =2x10"" L min”, 5., =0.02min" and y,, =2 min".

For ~95% of 10000 randomly generated combinations of r,.., 7z, is always less

m s
than 7,7, and 1, indicating noise reduction by simultaneous increase in P and yy
(7;and/or 7, may become greater than 1 if r . is negative). Such noise reduction is
always synergistic. By synergistic, we mean that the noise reduction by increased y; is
enhanced by larger P and vice versa. We thus use (1-7;)>(1-7,)+(1—-7,) to test
synergy (i.e. noise reduction at (P, 7. ) 1S larger than the sum of noise reduction at
(Poux> Vrmin ) @and at (P_. ., 7. )). In those cases that do not exhibit noise reduction, either
e OF Iy 1s close to -1. Given the possible global mechanisms contributing to extrinsic

noise sources (fluctuation in degradation machinery, dilution by stochastic cell
growth/division, for example), it is highly unlikely that extrinsic noise sources of A; and
C, or R and C are almost completely anti-correlated. Therefore, we expect the synergistic
noise reduction for arbitrarily correlated extrinsic noise sources.

7. Impact of noise on population fithess

It has been shown that extrinsic noise tends to be slow fluctuations that persist
over approximately one cell cycle [2]. Considering that many genes are controlled by QS
[3], if the expression of QS-regulated genes (effectors) is costly, persisting noise in the
gene expression might create significant cell-cell variations in the growth rate among the
population. Here, we perform a simple analysis to examine how such cell-cell variations
may affect the fitness of population, where a costly target gene is controlled by quorum
sensing.

For simplicity, we assume that the expression level of effectors in each cell ( X,

(i=1,...,n)) follows a normal distribution (e.g. X; ~ N(z,0)), where n is the number

of cells in the population. The expression level is assumed to sustain over one cell cycle.
The cost of expressing the effectors in each cell (c,) is described as ¢, = f (X;), while

the benefit (b,) from the effectors can be described as b, = f,(X,), where X is the

10



sample average of the expression level. We further assume that fitness of each cell (F,) is
F =F,+b —c;, where F, is basal fitness which represents fitness when the expression

of effectors is not triggered yet. For f, and f_, as used in a previous study [4], we

employed
f,(X)=AX,
f.(X)=¢

1-x/M’

We define population fitness as F, = %Z.n F. which is calculated by randomly

n

generating X’s. To examine the effect of cell-cell variation in the expression level of
effectors, we calculate the population fitness of 10000 cells with different o . As shown
in Figure S6, population fitness decreases as o increases. This makes intuitive sense
because the cost increases more than linear when the effectors level is increased and thus,

population cost (%Zinci ) increases as o increases. On the other hand, population benefit

(%Z:inbi ) hardly changes as X, is independent of o (it changes only due to a sampling
effect).

8. Model simplification

The DC component of the transfer function of extrinsic noise source, [H*(f = 0)‘
(Eq. (7)), is
(D7 + (D + 7,072 )7 + 2A%:,) + 2D, +7, )7eke R® (11)

(Deya, + (D + 70 )7 ) (rr + AKe) + 7eKe,) + (D, 7 )7c7rKe R® ’

where D, =P/V, and D,=P/V, . If P is sufficiently small so that D, <<y, (and
therefore, D, + 7, =~ y, ) is satisfied, Eq. (11) becomes

7/;(7}7{ +2A155k01)+27/RkCleS (12)
a(re (7 + A%Ke)) + 7gKes) + 7 7rke R

where y, =D; +y, .

Eq. (12) is, in fact, equivalent to the expression derived from the simplified
system in Figure 4A (in the simplified system, A; becomes A). Thus, the parameter
dependence of the DC component as well as low frequency components in which Eq.
(11) dominates the frequency response can be well captured by the simplified system at
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least under the aforementioned condition. The same simplification is applied for the case
with arbitrarily correlated extrinsic noise sources (not shown).

Also, if we differentiate Eq. (12) (= f,(y}4, 7z)) with respect to y), and y,, we

can show:
o, __ R¥yzkei(7c +2Ke,)
OY (Fa(re (g +Aisskc1)+7chz)+7C7ch1Rss)2
of, _ A%y ker (7e +2key)

OYx (Va(re (7s +Aisskc1)+7chz)+7c7ch1Rss)2

This result shows that the DC component and low frequency component whose behavior
is represented by Eq. (12) monotonically decrease by fast turnover of A and R. In fact, we

can show the similar inequalities for Eq. (11) (= f,(P, y3)) that of, /0P, &f, /0y, <0
(not shown).

9. Comparison of analytical and numeric results

The total noise in C and its PSD are calculated by numerical simulations of Eq.
(1) using base parameter sets with varying P (0 — 2x10™"!' L min™") and Vg (0.02 — 2 min’
". Overall, our analytical approach shows excellent match with the simulation results;
representative cases are shown in Figure S7. There is a significant deviation (e.g. 77 =

0.46 and 0.24 for analytical approach and simulation, respectively in Figure S7A) when P
=0 L min"' (or when P is close to 0). In this case, the distribution of C becomes widely
spread and skewed (Figure S8); the linearization is no longer a good approximation. The
skewed distribution of C is probably due to small number of molecules and nonlinearity
of the system, and results in the discrepancy between its deterministic steady-state level
and average level. When noise is small enough (e.g. the distribution is tight enough), the
distribution is almost symmetric, and the deterministic steady state level and the average
level show a good match.

While it has been shown that a bimolecular reaction can feature resonance/band-
pass filtering effects [5] and that a monostable system (in deterministic domain) can
exhibit noise-induced multistability [6], we did not observe such phenomena in our
system.
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