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1. Noise calculation 
We use a Langevin approach to study noise. We first solve the system of 

equations linearized around the steady state in the frequency domain, and then calculate 
the PSD (power spectrum density) of each species. The energy theorem enables us to 
calculate the variance of each species in the temporal domain by integrating the PSDs in 
the frequency domain. 

1.1 Linearization 
Langevin equations for the systems are: 
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The random timing and discrete nature of chemical reactions generate intrinsic 

noise sources. lζ  represents each intrinsic noise source associated with a reaction l   
(Table S1). mξ  (m = Ai, R and C)is the extrinsic noise source in each species. To be 
consistent with the main text we have, 
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Excluding extrinsic noise terms, our model formulation is equivalent to the 

standard chemical Langevin equation [1].  
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The system is monostable. We denote the steady state values of Ai, Ae, R and C as 
 and , respectively. We linearize the model Eq. (1) around the steady 

states by using 
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At the steady state, each noise process can be considered as a stationary process. 

The linearization gives 
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 (2) 

1.2 PSD calculation 
Here, we focus on solving noise for the complex (C). The same scheme applies to 

other species as well. Suppose the noise process is observed over the interval 
[ 2,2 TT− ]  and its Fourier transformation of Eq. (2) exists. Taking the Fourier 
transformation and solving for ∆C give; 
  
 ∑∑ +=∆

m
mm ffHffHfC )(ˆ)()(ˆ)()(ˆ ξζ ξζ

l
ll , 

where hats denote variables evaluated in the frequency domain (f represents ordinary 
frequency);  and  are frequency domain transfer functions for intrinsic and 
extrinsic noise sources. 

ζ
lH ξ

mH

 
 Unilateral PSD of ∆C (S∆C) can be calculated as 
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where bars denote ensemble average. The statistical properties of intrinsic noise sources 
are: 
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where  is an average reaction rate of the corresponding reaction at the steady state as 
summarized in the Table below, 

kv
)(τδ  is the Dirac’s delta function, and kk ′,δ  is the 

Kronecker's delta function. 
 
 

Noise source Reaction Average reaction rate ( ) kv

1ζ  AHL production Ak  

2ζ  Internal AHL (Ai) decay ss
iA A

i
γ  

3ζ  Complex association ssss
iC RAk 1  

4ζ  Complex dissociation ss
C Ck 2  

5ζ  Diffusion e
ss
ei

ss
i VAVAP −  

6ζ  External AHL (Ae) decay ss
eA A

e
γ  

7ζ  LuxR production Rk  

8ζ  LuxR decay ss
R Rγ  

9ζ  Complex decay ss
CCγ  

 
In the base model, we assume that all extrinsic noise sources are fully correlated 

( ξαξαξαξ === CCRRAA ii
, where mα  determines the relative strength of each 

extrinsic noise sources), and the spectrum is white. Then, we have 
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where β  is the effective magnitude of the extrinsic noise source. Under these conditions 
(Eqs. (4) and (5)), Eq. (3) becomes: 
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where  and  denote PSD of intrinsic and extrinsic noise sources.  ζ

lS ξS
 
Eqs. (4) and (5) lead to  and . If all extrinsic noise sources have 

the same magnitude (
ll vS 2=ζ βξ 2=S

1=== CRAi
ααα ), we have 
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where . ∑= m mHH ξξ

 

1.3 Noise calculation by the energy theorem 
For the gated noise processes  (noise processes observed over the finite time 

interval 
)(tx

[ ]2,2 TT− , where 0)( =tx  outside of this interval), the energy theorem states 
that 
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The right hand side uses the relationship: ∫∫

∞∞

∞−
=

0

22 )(ˆ2)(ˆ dffxdffx . This is 

possible because, as  is a real process, the integrand is an even function. Taking the 
ensemble average of both sides of Eq. (8) gives 

)(tx
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where  is the variance of .  2

xσ )(tx
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By using Eq. (9), the variance of C is calculated as 
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Also, we can see from Eq. (6) that 
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where  and  are the total noise, intrinsic noise and extrinsic noise, respectively. 22 , IT ηη 2

Eη
 

2. Impact of the dimerization of the complex 
 In this section, we incorporate the homodimerization of C into a dimer (D) and 
examine how the noise in D changes depending on different P and Rγ  using the same 
analytical approach described above. The system now becomes 
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where  and  are association and dissociation rate constants of D; 1Dk 2Dk 1110 , ζζ  and 12ζ  
are intrinsic noise sources originating from dimer association, dissociation and decay; and 

Dξ  is an extrinsic noise sources for D. We set  and to be the same as  and , 
respectively. We also assume that all extrinsic noise sources are correlated and of the 
same magnitudes. As shown in Figure S1, extrinsic noise in D and the gain of the transfer 

1Dk 2Dk 1Ck 2Ck
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function exhibit qualitatively the same dependence on P and Rγ  as noise in C without 
dimerization (Figure 2 and 3).  
 

3. Effects of population size on noise attenuation 
Figure S2 shows numeric simulations of noise in Ai, Ae, R and C when the system 

contains multiple cells coupled by quorum sensing signal. Simulations are performed for 
the following conditions:  

 
1) Each cell has its own microenvironment (e.g. no coupling).  
2) 100 cells are divided into ten populations, each of which contains ten cells 

coupled to one another via a common environment.  
3) 100 cells form 1 population of 100 coupled cells.  
 
In each case, the cell density is kept constant. Essentially, case 1 has no coupling 

between cells and case 3 has the strongest. If the coupling plays a significant role in 
reducing cellular noise, we would expect the least variability in case 3 and the most in 
case 1.  

 
However, numerical simulations indicate no significant change of noise in Ai, R 

and C in the population from 1 to 100 (<2 %). In contrast, noise in Ae is reduced by >80 
% while its absolute value of noise is >100 fold smaller than Ai, R and C. In Figure S2, 
we use a diffusion rate constant of 2×10-13 L min-1 and the similar result is obtained with 
a slower diffusion rate constant of 2×10-15 L min-1 (data not shown). Thus, the noise 
reduction in Ae has little impact on noise in C. Also, as discussed in the main text, the fast 
turnover of the signal plays a major role in noise attenuation of C, and coupling of a cell 
with its extracellular environment but not with multiple cells is sufficient to achieve the 
fast signal turnover via diffusion.  These results support that noise calculation in a single 
cell model is sufficient to examine the noise characteristics.  
 
 

4. Intrinsic noise dependence 
As mentioned in the main text, the total intrinsic noise does not change 

significantly when diffusion and R decay rates are modulated. However, individual 
indeed varies with these parameters, but they cancel out each other. Figure S3 shows how 
the PSD of each intrinsic noise source depends on diffusion rates. The same trend is 
observed when the R decay rate is varied (data not shown). 
 
 

5. Parameters and sensitivity analysis 
Parameters for the model are obtained from experimental measurements found in 

the literature or estimated based on the observed biological behavior of the system (Table 
S2). We also test if noise modulation of C by P and Rγ  is sensitive to the choice of other 
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parameters, including 1,,,,,, CCRAARA kkk
ei

γγγγ  and . Except for , each of these 
parameters is decreased and increased by 10 fold while the other parameters are held 
constant.  is only increased by 10 fold because the steady state value of A

2Ck Ak

Ak i becomes 
less than 1 when  is decreased by 10 fold.  Ak

 
As shown in Figure S4, in general, the total noise in C decreases as P or Rγ  

increases. Exceptions are when  is increased and Rk Rγ  is decreased (Figure S4A, ×10 
and 

Rk

Rγ /10, respectively). In the ×10 case, when P is increased from 2×10Rk -13 to 2×10-11 
L min-1, the total noise in C increases slightly. This increase is primarily due to the 
increase in the intrinsic noise (Figure S4C). In ×10 case, the intrinsic noise becomes 
comparable to extrinsic noise especially for fast diffusion (Figure S4B and C). However, 
we note that extrinsic noise consistently decreases with increasing P and the dynamic 
range of extrinsic noise is ~20 fold larger than that of intrinsic noise. This is also true for 
the 

Rk

Rγ /10 case. Therefore, we conclude that the qualitative behavior of extrinsic noise is 
insensitive to the base parameter sets, and as long as extrinsic noise dominates total noise, 
the behavior of total noise is also insensitive.  
 
 

6. Various correlation of extrinsic noise sources 
In the previous sections, we assumed that the extrinsic noise sources ( RAi

ξξ ,  and 

Cξ ) are fully correlated with one another. This condition is not necessarily satisfied in a 
real biological system. Here, we consider the general case where the extrinsic noise 
sources are correlated to varying extent or not correlated. 

  
Assuming that extrinsic noise sources are uncorrelated with intrinsic noise 

sources, PSD of extrinsic noise in C ( ) can be written as 
ECS∆
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where  (ξ

mmS ′ mm ′≠ ) is a cross-spectral density and ∗  denotes complex conjugate.  
 

When extrinsic noise sources are correlated only at simultaneous time points (i.e. 
)()()( τδτξξ mmmm Rtt ′′ =+ , where  is a constant),  mmR ′
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is the correlation coefficient between mξ  and m′ξ  ( mmmm rr ′′ = ).  

 
If all extrinsic noise sources have the same magnitude (i.e. 1=mα ), we obtain 
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2)(2 ssCβ  is constant, the dependence of  and  on P and mX mmY ′ Rγ  directly reflects the 

dependence of . The term 2
Eη CRA XXX ++  represents the contribution of extrinsic noise 

sources as independent entities and reflects a basal dependence of . 2
Eη  represents 

the contribution of correlation between two extrinsic noise sources, mξ  and m′ξ . 
 

The combination of nd  has a constraint (in addition to ACAR rr ,  a RCr 11 ≤≤− ′mmr ) 
and cannot be completely arbitrary. Partial correlation of iξ  and jξ  given kξ  ( ) is kijr ⋅
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Thus, we obtain the range of  as a function of  and , 
 
 ])1)(1(,1[Min])1)(1(,1[Max 2222

jkikjkikijjkikjkik rrrrrrrrr −−+≤≤−−−− . 
 
6.1 Uncorrelated Extrinsic Noise Sources 

When extrinsic noise sources are uncorrelated (i.e. 0=== RCACAR rrr ), only the 
 term (Eq. (10)) matters. As shown in Figure S5A,  shows 

qualitatively the same dependence as the case with fully correlated extrinsic noise sources 
(i.e. 

CRA XXX ++ CRA XXX ++

1=== RCACAR rrr ). It decreases with increasing P and Rγ .   
 
6.2 Arbitrarily Correlated Extrinsic Noise Sources 

If extrinsic noise sources are correlated, ’s terms contribute to . Figure 
S5B–D show  as a function of P and 

mmY ′
2
Eη

mmY ′ Rγ  calculated with base parameter values 
(Table S2), as also summarized below:  

 
Direction ARY  ACY  RCY  

Increasing P Monotonic decrease Monotonic decrease 
Monotonic increase or 
decrease depending on 

Rγ   

Increasing Rγ  Non-monotonic 
change Monotonic increase Monotonic decrease 

 
We note that the dependence of  and  on ARY ACY Rγ  and the dependence of  on 

P are negligible in comparison to that of 
RCY

CRA XXX ++  on these parameters. Thus, they 
do not affect the overall dependence of  on  2

Eη Rγ  and P. 
 
Since the dependence of  and  on P and that of  on ARY ACY RCY Rγ  have the same 

trend as , we expect  to monotonically decrease with increasing P and CRA XXX ++ 2
Eη

Rγ  if extrinsic noise sources are all positively correlated ( ’s > 0). In contrast, when 
 values are negative, increasing P and 

mmr ′

mmr ′ Rγ  may increase . To systematically 
examine the effect of arbitrary correlations of extrinsic noise sources, we use the 
following metrics:  

mmmm Yr ′′
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where  means  evaluated at ),( minmin

2
RE P γη 2

Eη P =  and minP Rγ = minRγ , and = 2×10minP -15 
L min-1, = 2×10maxP -11 L min-1, minRγ = 0.02 min-1 and maxRγ = 2 min-1.  
 

For ~95% of 10000 randomly generated combinations of , mmr ′ 3π  is always less 
than 21,ππ  and 1, indicating noise reduction by simultaneous increase in P and Rγ  
( 1π and/or 2π  may become greater than 1 if   is negative). Such noise reduction is 
always synergistic. By synergistic, we mean that the noise reduction by increased 

mmr ′

Rγ  is 
enhanced by larger P and vice versa. We thus use )1()1()1( 213 πππ −+−>−  to test 
synergy (i.e. noise reduction at ( maxmax , RP γ ) is larger than the sum of noise reduction at 
( minmax , RP γ ) and at ( maxmin , RP γ )). In those cases that do not exhibit noise reduction, either 

 or  is close to -1. Given the possible global mechanisms contributing to extrinsic 
noise sources (fluctuation in degradation machinery, dilution by stochastic cell 
growth/division, for example), it is highly unlikely that extrinsic noise sources of A

ACr RCr

i and 
C, or R and C are almost completely anti-correlated. Therefore, we expect the synergistic 
noise reduction for arbitrarily correlated extrinsic noise sources.  

 
 
 

7. Impact of noise on population fitness 
It has been shown that extrinsic noise tends to be slow fluctuations that persist 

over approximately one cell cycle [2]. Considering that many genes are controlled by QS 
[3], if the expression of QS-regulated genes (effectors) is costly, persisting noise in the 
gene expression might create significant cell-cell variations in the growth rate among the 
population. Here, we perform a simple analysis to examine how such cell-cell variations 
may affect the fitness of population, where a costly target gene is controlled by quorum 
sensing.  

 
For simplicity, we assume that the expression level of effectors in each cell (  

( )) follows a normal distribution (e.g. ), where n is the number 
of cells in the population. The expression level is assumed to sustain over one cell cycle. 
The cost of expressing the effectors in each cell ( ) is described as , while 
the benefit ( ) from the effectors can be described as 

iX
ni ,,1 K= ),(~ 2σµNX i

ic )( ici Xfc =

ib )( nbi Xfb = , where nX  is the 
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sample average of the expression level. We further assume that fitness of each cell ( ) is 
, where  is basal fitness which represents fitness when the expression 

of effectors is not triggered yet. For  and , as used in a previous study [4], we 
employed 

iF

iii cbFF −+= 0 0F

bf cf
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We define population fitness as ∑=

n

i inn FF 1  which is calculated by randomly 
generating X’s. To examine the effect of cell-cell variation in the expression level of 
effectors, we calculate the population fitness of 10000 cells with different σ . As shown 
in Figure S6, population fitness decreases as σ  increases. This makes intuitive sense 
because the cost increases more than linear when the effectors level is increased and thus, 
population cost ( ∑n

i in c1 ) increases as σ  increases. On the other hand, population benefit 

( ∑n

i in b1 ) hardly changes as nX  is independent of σ  (it changes only due to a sampling 
effect).  
 

8. Model simplification 
The DC component of the transfer function of extrinsic noise source, )0( =fH ξ  

(Eq. (7)), is  
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where ii VPD =  and ee VPD = . If P is sufficiently small so that 
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where 

iAiA D γγ +=′ .  
 

Eq. (12) is, in fact, equivalent to the expression derived from the simplified 
system in Figure 4A (in the simplified system, Ai becomes A). Thus, the parameter 
dependence of the DC component as well as low frequency components in which Eq. 
(11) dominates the frequency response can be well captured by the simplified system at 
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least under the aforementioned condition. The same simplification is applied for the case 
with arbitrarily correlated extrinsic noise sources (not shown).  

 
 Also, if we differentiate Eq. (12) ( ),(1 RAf γγ ′= ) with respect to Aγ ′  and Rγ , we 
can show: 
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This result shows that the DC component and low frequency component whose behavior 
is represented by Eq. (12) monotonically decrease by fast turnover of A and R. In fact, we 
can show the similar inequalities for Eq. (11) ( ),(2 RPf γ= ) that 0, 22 <∂∂∂∂ RfPf γ  
(not shown). 
 

9. Comparison of analytical and numeric results 
 The total noise in C and its PSD are calculated by numerical simulations of Eq. 
(1) using base parameter sets with varying P (0 – 2×10-11 L min-1) and Rγ  (0.02 – 2 min-

1). Overall, our analytical approach shows excellent match with the simulation results; 
representative cases are shown in Figure S7. There is a significant deviation (e.g.  = 
0.46 and 0.24 for analytical approach and simulation, respectively in Figure S7A) when P 
= 0 L min

2
Tη

-1 (or when P is close to 0). In this case, the distribution of C becomes widely 
spread and skewed (Figure S8); the linearization is no longer a good approximation. The 
skewed distribution of C is probably due to small number of molecules and nonlinearity 
of the system, and results in the discrepancy between its deterministic steady-state level 
and average level. When noise is small enough (e.g. the distribution is tight enough), the 
distribution is almost symmetric, and the deterministic steady state level and the average 
level show a good match.  
 

While it has been shown that a bimolecular reaction can feature resonance/band-
pass filtering effects [5] and that a monostable system (in deterministic domain) can 
exhibit noise-induced multistability [6], we did not observe such phenomena in our 
system.    
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