

Figure S7: Variation of Fig. 9 (i.e., of computer simulation 4) with the weight-dependent STDP rule proposed in [23]. This rule is defined by the following equations: $\Delta w_+ = \lambda w_0^{1-\mu} w^\mu e^{-|\Delta t|/\tau_+}$ and $\Delta w_- = \lambda \alpha w e^{-|\Delta t|/\tau_-}$. We used the parameters proposed in [23], i.e. $\mu = 0.4$, $\alpha = 0.11$, $\tau_+ = \tau_- = 20$ ms, $\lambda = 0.1$ and $w_0 = 72.4$ pS. The w_0 parameter was calculated according to the formula: $w_0 = \frac{1}{2} w_{max} \alpha^{\frac{1}{1-\mu}}$ where w_{max} is the maximum synaptic weight of the synapse. The amplitude parameters of the reward kernel were set to $\alpha_P = -\alpha_N = 1.401$. All other parameter values were the same as in computer simulation 4. The variance of the membrane potential increased for pattern P from $2.35(mV)^2$ to $3.66(mV)^2$ (panel C), and decreased for pattern N (panel D), from $2.27(mV)^2$ to $1.54(mV)^2$.