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Proof of Theorem 4

The proof is based upon Thom’s transversality theorem. We will then make
the computations in the spaces of jets. For a positive integer m and a pair
(X, u) € R?" xR", we denote by J(X ) the space of m-jets at (X, u) of functions
in C°°(R3", R).

Fix now a point X" € R?" which is not an equilibrium of the vector field F.
We define A™(X?) C J (%00 as the set of m-jets of functions f € C*° (R3*",R)

such that the trajectory of Equation 11 issued from X° and associated to the
control v = 0 is locally minimizing for the optimal control problem (Py).

Lemma 1. A™(X?) is contained in a vector subspace of \7(’}}0,0) of codimension
n(m —2).

Proof. Without lack of generality we assume X° = 0. Let j7'f be a m-jet in
A™(0). By definition of A™(0), the trajectory X (-) of F issued from 0 minimizes
the problem (Pf) on an interval I = [0,s]. Thus X(-) satisfies Pontryagin’s
Maximum Principle on I: there exists a smooth function P = (p,q) : I —
R™ x R™ (the smoothness of P results from that of X) and A > 0 such that, for
allt e I, (P(t), )#Oand

(P1)  P()" = —GE(X(t), P(t),,0),
(P2)  H(X(1), ()>\0) max H(X(t), P(t), }, v),

where the Hamiltonian of the problem is:
H(X, P\ u) =ply+q" o(X, u) = \f(X, u).
Note that, since 0 € int U, property (P2) implies 22 (X (t), P(t),\,0) = 0. It

follows: of Y
T -1
a®)” = 2L (x(0), 0055 (x (1), 0.

If A\ =0, then ¢ = 0. From ¢ = 0 and (P1) we deduce p = 0 and then
(P, \) =0, which is impossible. Thus A is positive and a standard argument of
homogeneity allows normalizing it to A = 1. Finally, from respectively (P1) and
(P2), the following holds on the interval I:

5= 0" 22 x,0) - P (x0),
a o 200 O
i =" " 5o 0 - o) (1)
and, of
= Y x0 % x,0 2



Now, recall that on I the dynamic is X = F(X). Since X° = 0 is not
an equilibrium point of F', we assume, up to a local change of the coordinates
X = (X1,...,X9,) on R?" that F = %1. Differentiating Equation 1 with
respect to time leads to:

T T T ¢ o 99 of
q = P a¢q ;f_q gigl dy bf
_ T T T
—q" 52 0 5y — 4 3% 3y (3)
o _0Of
8X1 ay’

in which we omit the evaluation at (X,0).
On the other hand, we can also obtain ¢” and §7 by differentiation of Equa-

tion 2:
i = a%l% <8u) + 0?{1(33) '
it = aé))cf%x(&b) +26X1 Xagl(%r1
+55 x 8?;(33)71.

Substituting these expressions and Equation 2 into Equation 3, we eliminate
g%, ¢, and ¢ and we obtain:
82g+ (38f8f88f8f
0X2 du 0X, Ou’ ou’ 0X, 0X; 0X;

) 0 on I,

where, for every X, Rx is a linear mapping and X — Ry is smooth. Successive
derivations and evaluation of the derivatives at ¢ = 0 (recall that X (0) = 0)
lead to a system of equations of the form:

k i
6(2(’C Gu( ) + Rk( ({;J %(0)7

i 9 .
ai{a—){i(O);j<k,1§z§2n>=0, k> 2,

where each R is a linear mapping.
Thus we have proved A™(0) C ker ), where 1 : Jg" — R™™~2) is the linear
mapping which associates

o* af k( 87 of
Per 5L0) + B (27500,

i 9 . )
SBX{T)J(:(O)U <k, 1 §z§2n>

2<k<m—1

to a m-jet ji' f.
This linear mapping being obviously surjective, the conclusion follows.
O

Theorem 4 follows from Lemma 1 combined with the classical Thom’s transver-
sality Theorem. O

Remark 1. In the computations in the jet space, only f(X,0), %(X, 0), and
their derivatives with respect to X appear. Thus the statement of Theorem 4
still holds if we replace C*°(R®*", R) by the set of polynomial functions of u with
coefficients in C°°(R?",R), or, even better, by the space of functions f(X,u)
differentiable with respect to u at v = 0 (and such that f(X,0) and %(X, 0)
are smooth). On the other hand, since the set O is open, it is also possible to
replace C>°(R3",R) by any of its open subsets, for instance by the set of strictly
convex functions w.r.t. u in C*°(R?*", R).



Proof of Theorem 5

We consider a control system where the control acts linearly on the acceleration,
with as many inputs as degrees of freedom:

&= ¢(x,2) + N(x)u,
where
e z belongs to R™ (or to a n-dimensional differentiable manifold);
e the control u € R" is bounded: u; < wu; < u with u; <0, u > 0;
o ¢ € C°(R*™ R");
o for every z the (n x n) matrix N(z) is invertible and = +— N(z) is C°.

Setting X = (z,y), we rewrite the system as:

X=FX)+> ubi(X), X €R*™ uelUCR", (4)
i=1
where F and by, ..., b, are vector fields on R?".

An equilibrium of this system is a stationary trajectory X = X°, associated
to a control v = u° with:

F(X%) + Y ufby(X°) =o.

Fix a “source-point” X° € R2", a “target-point” X! € R2?", and a time
T > 0. Given a function f on R3", we define the following optimal control
problem:

(Pf) minimize the cost J(u) = fOT F(X u)dt
among the trajectories of Equation 4 joining X° to X!.

We will restrict to functions f(X, u) in SC, the set of C> functions from R?" x R"
to R which are strictly convex with respect to u (in the strong sense, of course,
that the Hessian is positive definite). The precise result we show is more than
Theorem 5: it shows that the bad subset is very small (has infinite codimension).

Theorem 1. There exists an open and dense subset O' of SC (endowed with
the C°° Whitney topology) such that, if f € O, then (Ps) does not admit
minimizing controls u with a component w; vanishing on a subinterval of [0,T],
except maybe if the associated trajectory on the subinterval is an equilibrium of
the system. In addition, for every integer N, the set O’ can be chosen so that
its complement has codimension greater than N.

Of course we assume 7" > T\, the minimum time. Again the proof is based
upon Thom’s transversality theorem, we will then make the computations in
the spaces of jets. For a positive integer N and a pair (X,u) € R?" x R", we
denote by J&u) the space of N-jets at (X, u) of functions in C°°(R3", R).



Lemma 2. Let f € C2(R3",R). Assume that the trajectory (X, u) minimizing
(Py) satisfies, on a subinterval I of [0,T:

o u;, =0 for some ip € {1,...,n};
o X # 0 (i.e., the restriction X|; contains no equilibrium of the system,).

Then there exists t € I such that the N -jet j&(t)’u(t))f belongs to a semi-
algebraic subset of jg((t%u(t)) of codimension greater than N — 2n.

Proof. Recall that, under the hypothesis of the lemma, there is a trajectory
(X, ) minimizing (P;). Moreover this trajectory is not the projection of a
singular extremal, and its associated control u is continuous. Thus, applying
Pontryagin’s Maximum Principle on I, there exists a C! function P = (p,q) :
I — R™ x R™ such that, for all ¢t € I:

(P1)  P)" = —GE(X(1)., P(t), u(?)),
(P2)  H(X(t),P(t),u(t)) = max,ey H(X(¢), P(t),v),
where H is the normal Hamiltonian of the problem,
H(X,P,\u) =p"y +q" (6(X) + N(2)u) — f(X,u).
From (P1), the following holds on the interval I:
o= —q"GEX) - (X w),
{ ¢’ = " =" X)) - F(X ).

(5)

On the other hand, (P2) implies that, for every ¢ € I, u(t) satisfies the
Karush-Kuhn-Tucker conditions: there exist Lagrange multipliers A" (), A\~ (¢)
in R™ such that:

NG (0) alt) — 92 (X0, u(B)T ~ X* (1)~ A~ (1) =0,
A7) >0, i=1,...,n,

i (
MO wilt) —uf) =27 (O (wi(t) —u; ) =0, i=1,...,n.

Since the control w is continuous, we may assume without lack of generality

that there exist a nonempty subinterval J of I and an integer m € {0,...,n—1}
such that:
e for i = 1,...,m, we have u;(t) €Ju;,u; [ for every t € J; in this case

/\j' =), =0 and,

0
(V@) = -(Xeu) on
o fori=m+1,...,n—1, u; is constant on J and equals to u; or uj;

e u, = 0 vanishes on J (i.e., ip = n); as a consequence, ;) = \,, = 0 and,

_or

(N(x)Tq)n ~ Du,

(X,u) onJ.



Denote by o = (v1,. .., V) the first m coordinates of a vector v € R™. Then
the minimizing control can be written as u(t) = (a(t),u’), where u® € R*~™ is
constant, and,

of

N(z)Tq= o

—=(X,u)T onJ (6)
Case 1. The matrix %(X ,u) is invertible on a subinterval J’ of J.

It results from the Implicit Functions Theorem applied to Equation 6 that
@ is C* on J' and, for all t € .J/,

i(t) = X, u) (SN @) e
(L — X2, ui(t) Lo, ) 35X (), u(®)T),

where Ly and L, denote the Lie derivative with respect to respectively F' and
b;. We use Equation 5 to eliminate ¢(¢) in the expression

d
dt

—N(z(t))q(t) = DN (z(£)T (y)a(t) + N(z(t)T4(?),
and we obtain:

it) = Qx(p(t),a(t), ult);

>*f &f  of
st by o At (X(0,u(t)) ),

(7)

where QQx is a rational function depending smoothly on X.

Fix now s € J'. Since X(t) = F(X(t)) + 3, ui(t)b;(X (1)) is never van-
ishing on J’, we may assume, up to a local change of the coordinates X =
(X1,..., Xan) on R?" near X (s), that F(X)+ Y, ui(s)bi(X) = 5% . Differen-

tiating (N (x)Tq), = au L (X, u) with respect to time near t = s leads to

LN @) qt)n = %(X(tm(m
+ 8, Aut ()L, (X0, u(0)
H YT S (X (), ult)) (1),

where Au®(t) = u(t) — u(s). We substitute the expressions Equation 7 of u(t)
and Equation 5 of ¢,, into this equation, and we obtain, for ¢ near s,

au axl +Rx(2A“ FundX: 28X )
_o°f f) f_ of _
Fu:0u; * 900X, Doy P> g u) =0

where R is a rational function with coefficients depending smoothly on X, and
a;, 1 < i < 3n, denotes the i*" component of the vector a = (X, u).

Successive derivations (with substitution of u%(t) by Equation 7 and of p and
¢ by Equation 5 at each step) and evaluation of the derivatives at ¢t = s lead to
a system of equations of the form, for k£ > 1,

L (X(s),u(s) + BN (P(s),
sl (X(s),u(9)):d <k +1) =0,

Doy, -



where R* is a rational function, and if j = k + 1 then at least one of the o, is
a U;-

Let Q be the set of N-jets j(]\)f((s),u(s))f such that det(ng’;(X(s), u(s))) # 0.
It is an open subset of ._7(1;7((8)7“(5)).

We have proved that (jg\)]{(s)#(s))f, P(s)) belongs to ¥y 1(0), where ; : QN x
R?" — RN~ is the rational mapping which to a N-jet j(]\)f((s)’u(s))g € OV and a
vector P € R?" associates

"4 (X (s),u(s)) + R¥(P,

BundXF _
g .

o (X)) <k+1) |
This mapping is clearly surjective, therefore 17 (0) is a semi-algebraic subset of
77(];]((‘3)7“(3)) X RZ” of cod.imension N-—1. -The p-rojection of 17 (0) on ‘7(1;2(3)7“(.3))
is then a semi-algebraic subset of codimension greater than N — 2n, which
moreover contains the N-jet jg\)f((s) u(s))f.

Case 2. The matrix %(X ,u) is never invertible on J.

In order to show that @ is C! and to derive an expression for i, we need
to introduce some notations. We define inductively a sequence of mappings
VE:R?" x R® — R™ by:

ofT
‘/‘O_
* - ou

e for a positive integer ¢, the components of V¢ are:

Vit if1<k<ry,

Vi = Vit
k det( L ifrp+1<k<m,
an .
i,5=1,...,Te,k

where r;, = 74(X, u) is the rank of the matrix 8‘32_1 (X, u).

By hypothesis, r1 (X (¢),u(t)) is smaller than m for ¢t € J. Since X(-) and
u(+) are continuous, up to a permutation of the indices {1,...,m}, there is a
subinterval J’ of J such that, for any £ > 1,

e the rank r¢(X(t),u(t)) is constant on J’;

e the function

Ge(X (1), u(t)) = det (aa"ﬁj (X(®), U(t))>

1<4,j<re

is never vanishing on J';



e if 7y < m, then

VAX(®),u(t) = ((N®)) a1,
(N(z(t)Tq(t))r,,0,...,0) for all t € J'.

Notice that an easy induction shows the following expression:

—7 G (8)

where G+ is a polynomial function of the derivatives of the form TP T 6]{«;71 ,
i O
with j <241, each iy <k, and ), i < k(£ +1).

Denote by L the largest integer such that r;, < m (we set L = +oo if the
latter condition is always satisfied). Then, for £ =1,..., L, V*(X,u) =0 on J'.
If moreover L < oo, there holds on .J’,

VEXu) = ((N@) )1, (N(@) ),
0,...,0) and %(X, u) invertible,

with u(-) = (a(-),u). It then results from the Implicit Functions Theorem that
@ is C' on J'. Following exactly the argument of Case 1, we obtain a system of
equations of the form, for a fixed s € J’,

8k+1f

W(X(S)»U(S)) + R, =0, k>1,

where R} is a rational function of P(s) and of derivatives %(X(s), u(s))
PpRT

such that j < k + L and, if one of the «;, is uy, then j <k+1and j=k+1
implies that at least one of the other oy, is a ;.

Set M = min(L, N —1). Let QY be the set of N-jets j&(s)’u(s))f such that:
(X (s),u(s))...om(X(s),u(s)) #0.
: N
It is thus an open subset of j(X(s)’u(s)).

We have proved that (jg\)]((s),u(s))f’ P(s)) belongs to 15 (0), where 5 : Q& x
R?” — RN~ ig the rational mapping which to (j&(s)’u(s))f, P(s)) associates

8£+1f
51...5ET(X(S),U(S))+G]€’Z ,
outtt
k 1<0<M
ak+1f )
————(X(s),u(s)) + R :
(aun(‘)Xf( ) ) § 1§k§N—M—1>

This mapping is clearly surjective, therefore 15 1(0) is a semi-algebraic subset of
j(];]((s),u(s)) x R2" of codimension N —1. The projection of w;l(O) on ‘7(];[((5),u(s))
is then a semi-algebraic subset of codimension greater than N — 2n, which
contains the N-jet j(]\)’((sm(s))f.

O

Theorem 1 follows from Lemma 2 combined with standard transversality
arguments.



Computation of Extremals in the 2-dof Case

We use the stratification of the (ug, ug)-plane with respect to the ”sign of coor-
dinates”. Thus we have the following analysis. -
1. In the strata uj,us > 0, the maximum of H(uq,us2) is solution of the

following system (setting s; = —1, so = —1) :
oF
0 = 77_[ =
8u1

s1.|y1| — 200 Hyp (HyqJup — Gy + h(yg + 2y142)
— By — Biaye]

+ Hyp.[ug — G — h.y} — Bory1 — Baoya))

— 205 Hyy (Hy[ur — Gy + h.(y3 + 2132)

— By — Biayo]

+ Hap.[ug — G — h.y} — Ba1y1 — Baoya))

+ qiHi1 + g2 Ho

and,

OH
= 3w =
s2.|y2| — 201 Hyo(Hi1.[ug — G1 + h.(y3 + 2y12)
— Biiyr — Bi2ys]
+ Hiz.[us — G2 — h.yi — Ba1y1 — Baoyo))
— 200 Hop(Hay . [ur — Gy + h.(y3 + 2012)
— Biiyr — Bi2yg]
+ Hap.[ug — G2 — h.yi — Ba1y1 — Baoyo))
+ q1Hi2 4 g2 Hoo.

0

Regrouping the wu;s all together, we get:

(2a1f_1121 + 2a2ﬁ221)u1 + (201 Hyy Hyg + 200 Hoy Hag )us
= s1.|y1| — 200 Hy1 (Hi1.[-G1 + ho(y5 + 2y192)

— By — Biayo]

+ Hi5.[-Go — h.yi — Baryr — Baoya))

— 200 Hoy (Ho1.[-G1 + h.(y3 + 2y192)

— By — Biayo]

+ Hay.[-Go — h.yi — Baryr — Baoya))

+ quHiy + qoHo

and,



(200 Hio H1y + 200 Hyg Hoy )uy + (201 HYy + 200 H3, Jus
= $o.y2| — 200 Hio(H11.[-G1 + h.(y3 + 2y1y2)

— Buiyi — Biaye]

+ Hi.[-Go — h.yi — Ba1ys — Baoya))

— 200 oo (Ho1.[-G1 + h.(y3 + 2y192)

— Buiyi — Biaye]

+ Hay.[-Go — h.yi — Ba1ys — Baoya))

+ qiHio + qoHos,

Which is a system of the general form:

sijp|+C1 = (2a1H12_1 +_2042H'221)u1_ B
—&-(2041H11H12 + 2042H21H22)u2
s2.ly2| + Co = (200 HigHyy + 200 Hag Hay )uy

+(2O&1H122 + 20[2H222)U2.

The solutions follow:

(a1 A7y + apH3,)(C1 + s1.|y1])

u = — — — —
! 2cya0(Hy1 Hog — HigHop)?
_ (e Hoy Hao +7041[{12H112(027 + s2.]y2|)
_20q09(Hi1Hog — HiaHop)? (9)
vy = —(anH11Hi2 + o Ho1 Ha2)(Ch + s1.|y1])

2a1ag(Hyy Hoo — Hi2Hop)?
(on HFy + 02 H3)(Co + 52.[ya])
201a0(Hy1Hap — Hi2Ho1)?

2. In the strata uq; > 0 and us < 0, the maximum is solution of the same
system, and has the same expression (Equation 9), but taking s; = —1 and

3-4. In the stratas Ss, S4, corresponding respectively to (u; < 0, ug <
0), ( u1 <0, ug > 0), we get the same expression taking respectively (s; = +1,
So9 = —1), (51 = +1, S9 = +1)

5. For the strata u; = 0 and uy > 0, we set s = —1. The maximum is given
OH
0 = —-——
6UQ

s9.y2| — 200 Hyo(Hyy.[-G1 + h.(y3 + 2y192)
— Biiyr — Biaye]

+ Hiz.[ug — Go — h.y} — Ba1y1 — Baoyo))

— 209 Hoo (Ho1.[~G1 + h.(y3 + 2y192)

— Biiyr — Biaye]

+ Hay.[ug — Go — h.y} — Ba1y1 — Baoyo))

+ quHiz + g2 Has.



Regrouping the terms in wus:
(201 HZ, + 2000 Hy Yuio
= s9.|y2| — 201 Hyo(Hy1.[~ Gy + h.(y3 + 2y12)
— Buiy1 — Bi2ys]
+ Hi2.[-G — h.yi — Baiyr — Baaya))
— 200 Hoo(Ho1.[-G1 + h.(y3 + 2y192)
— Buiyr — Biayo]
+ Ha.[~G — h.yi — Baiyr — Baaya))
+ q1Hyz + g2 Haa,
or,
(201 HZy + 200 H3y Yug = 59.]ya| + Co.

Therefore:
_ Sg-\yﬂ +Co
2 20&1H122 + 20(2H222 ’

6. In the strata u; = 0 and us < 0 the expression is similar, with so = +1.

7. In the strata u; > 0 and uy = 0, we set s; = —1.
O = 877-{ =
aul

s1-|y1| — 200 Hyy (Hip[ug — Gy + he(y3 + 29192)
— Biiyr — Bi2ys]
+ Hiz.[-G2 — h.yi — Ba1y1 — Baoyo))
— 200 Hoy (Hay . [ur — Gy + h.(y3 + 2012)
— Biiyr — Bi2ys]
+ Hap.[-G2 — hyf — Boyy1 — Ba2yo))
+ q1Hi1 4 g2 Ho.
Regrouping the u; terms:
(200 HZ, + 2000 HZ )uy
= s1.ly1| — 200 Hiy (Hu1 [-G1 + h(y3 + 2y192)
— Bi1y1 — Biays]
+ Hyp.[~G3 — h.yi — Ba1y1 — Baoyp))
— 200 Hay (Ho1 [~ Gi + he(y3 + 2y12)
— B11y1 — Biays]
+ Hao.[-Ga — h.y? — Ba1y1 — Basya])
+ q1Hi1 + g2 Hon,
or,
(200 HE, + 2000 H2) )up = s1.|y1| + Ch.

From what:

wr = s1.y1] + Ch
' 200 H? + 20002,

10



8. In the strata u; < 0 and us = 0, we get the same expression with s; = +1.
9. On the last strata u; = us = 0, the maximum is obviously u; = us = 0.

Notice also that we know (Theorem 3) that the optimal control is continuous.
Then, we integrate Pontryagin’s equations by finding the maximum of the

Hamiltonian within the 9 expressions above, and checking in which region it is.
A trial and error procedure on the initial adjoint vector does the job.

11



