Supporting Information (Text S1)

Some Mathematical Details and Technical Proofs
Bastien Berret, Christian Darlot, Frédéric Jean, Thierry Pozzo, Charalambos
Papaxanthis, and Jean Paul Gauthier

Proof of Theorem 4

The proof is based upon Thom's transversality theorem. We will then make the computations in the spaces of jets. For a positive integer m and a pair $(X, u) \in \mathbb{R}^{2 n} \times \mathbb{R}^{n}$, we denote by $\mathcal{J}_{(X, u)}^{m}$ the space of m-jets at (X, u) of functions in $C^{\infty}\left(\mathbb{R}^{3 n}, \mathbb{R}\right)$.

Fix now a point $X^{0} \in \mathbb{R}^{2 n}$ which is not an equilibrium of the vector field F. We define $\mathcal{A}^{m}\left(X^{0}\right) \subset \mathcal{J}_{\left(X^{0}, 0\right)}^{m}$ as the set of m-jets of functions $f \in C^{\infty}\left(\mathbb{R}^{3 n}, \mathbb{R}\right)$ such that the trajectory of Equation 11 issued from X^{0} and associated to the control $u=0$ is locally minimizing for the optimal control problem $\left(\mathcal{P}_{f}\right)$.

Lemma 1. $\mathcal{A}^{m}\left(X^{0}\right)$ is contained in a vector subspace of $\mathcal{J}_{\left(X^{0}, 0\right)}^{m}$ of codimension $n(m-2)$.

Proof. Without lack of generality we assume $X^{0}=0$. Let $j_{0}^{m} f$ be a m-jet in $\mathcal{A}^{m}(0)$. By definition of $\mathcal{A}^{m}(0)$, the trajectory $X(\cdot)$ of F issued from 0 minimizes the problem $\left(\mathcal{P}_{f}\right)$ on an interval $I=[0, s]$. Thus $X(\cdot)$ satisfies Pontryagin's Maximum Principle on I : there exists a smooth function $P=(p, q): I \rightarrow$ $\mathbb{R}^{n} \times \mathbb{R}^{n}$ (the smoothness of P results from that of X) and $\lambda \geq 0$ such that, for all $t \in I,(P(t), \lambda) \neq 0$ and:

$$
\begin{align*}
& \dot{P}(t)^{T}=-\frac{\partial H}{\partial X}(X(t), P(t), \lambda, 0) \tag{P1}\\
& H(X(t), P(t), \lambda, 0)=\max _{v \in U} H(X(t), P(t), \lambda, v)
\end{align*}
$$

where the Hamiltonian of the problem is:

$$
H(X, P, \lambda, u)=p^{T} y+q^{T} \phi(X, u)-\lambda f(X, u) .
$$

Note that, since $0 \in \operatorname{int} U$, property (P2) implies $\frac{\partial H}{\partial u}(X(t), P(t), \lambda, 0)=0$. It follows:

$$
q(t)^{T}=\lambda \frac{\partial f}{\partial u}(X(t), 0) \frac{\partial \phi}{\partial u}(X(t), 0)^{-1}
$$

If $\lambda=0$, then $q \equiv 0$. From $\dot{q} \equiv 0$ and (P1) we deduce $p \equiv 0$ and then $(P, \lambda) \equiv 0$, which is impossible. Thus λ is positive and a standard argument of homogeneity allows normalizing it to $\lambda=1$. Finally, from respectively (P1) and (P2), the following holds on the interval I :

$$
\begin{align*}
\dot{p}^{T} & =-q^{T} \frac{\partial \phi}{\partial x}(X, 0)-\frac{\partial f}{\partial x}(X, 0) \\
\dot{q}^{T} & =-p^{T}-q^{T} \frac{\partial \phi}{\partial y}(X, 0)-\frac{\partial f}{\partial y}(X, 0) \tag{1}
\end{align*}
$$

and,

$$
\begin{equation*}
q^{T}=\frac{\partial f}{\partial u}(X, 0) \frac{\partial \phi}{\partial u}(X, 0)^{-1} . \tag{2}
\end{equation*}
$$

Now, recall that on I the dynamic is $\dot{X}=F(X)$. Since $X^{0}=0$ is not an equilibrium point of F, we assume, up to a local change of the coordinates $X=\left(X_{1}, \ldots, X_{2 n}\right)$ on $\mathbb{R}^{2 n}$, that $F=\frac{\partial}{\partial X_{1}}$. Differentiating Equation 1 with respect to time leads to:

$$
\begin{align*}
\ddot{q}^{T}= & -\dot{p}^{T}-\dot{q}^{T} \frac{\partial \phi}{\partial y}-q^{T} \frac{\partial}{\partial X_{1}} \frac{\partial \phi}{\partial y}-\frac{\partial}{\partial X_{1}} \frac{\partial f}{\partial y} \\
= & -q^{T} \frac{\partial \phi}{\partial x}-\frac{\partial f}{\partial x}-\dot{q}^{T} \frac{\partial \phi}{\partial y}-q^{T} \frac{\partial}{\partial X_{1}} \frac{\partial \phi}{\partial y} \tag{3}\\
& -\frac{\partial}{\partial X_{1}} \frac{\partial f}{\partial y},
\end{align*}
$$

in which we omit the evaluation at $(X, 0)$.
On the other hand, we can also obtain \dot{q}^{T} and \ddot{q}^{T} by differentiation of Equation 2:

$$
\begin{aligned}
\dot{q}^{T}= & \frac{\partial}{\partial X_{1}} \frac{\partial f}{\partial u} \times\left(\frac{\partial \phi}{\partial u}\right)^{-1}+\frac{\partial f}{\partial u} \times \frac{\partial}{\partial X_{1}}\left(\frac{\partial \phi}{\partial u}\right)^{-1} \\
\ddot{q}^{T}= & \frac{\partial^{2}}{\partial X_{1}^{2}} \frac{\partial f}{\partial u} \times\left(\frac{\partial \phi}{\partial u}\right)^{-1}+2 \frac{\partial}{\partial X_{1}} \frac{\partial f}{\partial u} \times \frac{\partial}{\partial X_{1}}\left(\frac{\partial \phi}{\partial u}\right)^{-1} \\
& \left.+\frac{\partial f}{\partial u} \times \frac{\partial^{2}}{\partial X_{1}^{2}} \frac{\partial \phi}{\partial u}\right)^{-1} .
\end{aligned}
$$

Substituting these expressions and Equation 2 into Equation 3, we eliminate q^{T}, \dot{q}^{T}, and \ddot{q}^{T} and we obtain:

$$
\frac{\partial^{2}}{\partial X_{1}^{2}} \frac{\partial f}{\partial u}+R_{X}\left(\frac{\partial}{\partial X_{1}} \frac{\partial f}{\partial u}, \frac{\partial f}{\partial u}, \frac{\partial}{\partial X_{1}} \frac{\partial f}{\partial X_{i}}, \frac{\partial f}{\partial X_{i}}\right)=0 \quad \text { on } I,
$$

where, for every X, R_{X} is a linear mapping and $X \mapsto R_{X}$ is smooth. Successive derivations and evaluation of the derivatives at $t=0$ (recall that $X(0)=0$) lead to a system of equations of the form:

$$
\begin{aligned}
& \frac{\partial^{k}}{\partial X_{1}^{k}} \frac{\partial f}{\partial u}(0)+R^{k}\left(\frac{\partial^{j}}{\partial X_{1}^{j}} \frac{\partial f}{\partial u}(0)\right. \\
& \left.\quad \frac{\partial^{j}}{\partial X_{1}^{j}} \frac{\partial f}{\partial X_{i}}(0) ; j<k, 1 \leq i \leq 2 n\right)=0, \quad k \geq 2
\end{aligned}
$$

where each R^{k} is a linear mapping.
Thus we have proved $\mathcal{A}^{m}(0) \subset \operatorname{ker} \psi$, where $\psi: \mathcal{J}_{0}^{m} \rightarrow \mathbb{R}^{n(m-2)}$ is the linear mapping which associates

$$
\binom{\frac{\partial^{k}}{\partial X_{1}^{k}} \frac{\partial f}{\partial u}(0)+R^{k}\left(\frac{\partial^{j}}{\partial X_{1}^{j}} \frac{\partial f}{\partial u}(0),\right.}{\left.\quad \frac{\partial^{j}}{\partial X_{1}^{j}} \frac{\partial f}{\partial X_{i}}(0) ; j<k, 1 \leq i \leq 2 n\right)}_{2 \leq k \leq m-1}
$$

to a m-jet $j_{0}^{m} f$.
This linear mapping being obviously surjective, the conclusion follows.

Theorem 4 follows from Lemma 1 combined with the classical Thom's transversality Theorem.

Remark 1. In the computations in the jet space, only $f(X, 0), \frac{\partial f}{\partial u}(X, 0)$, and their derivatives with respect to X appear. Thus the statement of Theorem 4 still holds if we replace $C^{\infty}\left(\mathbb{R}^{3 n}, \mathbb{R}\right)$ by the set of polynomial functions of u with coefficients in $C^{\infty}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)$, or, even better, by the space of functions $f(X, u)$ differentiable with respect to u at $u=0$ (and such that $f(X, 0)$ and $\frac{\partial f}{\partial u}(X, 0)$ are smooth). On the other hand, since the set O is open, it is also possible to replace $C^{\infty}\left(\mathbb{R}^{3 n}, \mathbb{R}\right)$ by any of its open subsets, for instance by the set of strictly convex functions w.r.t. u in $C^{\infty}\left(\mathbb{R}^{3 n}, \mathbb{R}\right)$.

Proof of Theorem 5

We consider a control system where the control acts linearly on the acceleration, with as many inputs as degrees of freedom:

$$
\ddot{x}=\phi(x, \dot{x})+N(x) u,
$$

where

- x belongs to \mathbb{R}^{n} (or to a n-dimensional differentiable manifold);
- the control $u \in \mathbb{R}^{n}$ is bounded: $u_{i}^{-} \leq u_{i} \leq u_{i}^{+}$with $u_{i}^{-}<0, u_{i}^{+}>0$;
- $\phi \in C^{\infty}\left(\mathbb{R}^{2 n}, \mathbb{R}^{n}\right)$;
- for every x the $(n \times n)$ matrix $N(x)$ is invertible and $x \mapsto N(x)$ is C^{∞}.

Setting $X=(x, y)$, we rewrite the system as:

$$
\begin{equation*}
\dot{X}=F(X)+\sum_{i=1}^{n} u_{i} b_{i}(X), X \in \mathbb{R}^{2 n}, u \in U \subset \mathbb{R}^{n} \tag{4}
\end{equation*}
$$

where F and b_{1}, \ldots, b_{n} are vector fields on $\mathbb{R}^{2 n}$.
An equilibrium of this system is a stationary trajectory $X \equiv X^{0}$, associated to a control $u \equiv u^{0}$ with:

$$
F\left(X^{0}\right)+\sum_{i} u_{i}^{0} b_{i}\left(X^{0}\right)=0
$$

Fix a "source-point" $X^{0} \in \mathbb{R}^{2 n}$, a "target-point" $X^{1} \in \mathbb{R}^{2 n}$, and a time $T>0$. Given a function f on $\mathbb{R}^{3 n}$, we define the following optimal control problem:
$\left(\mathcal{P}_{f}\right) \quad$ minimize the $\operatorname{cost} J(u)=\int_{0}^{T} f(X, u) d t$ among the trajectories of Equation 4 joining X^{0} to X^{1}.

We will restrict to functions $f(X, u)$ in $\mathcal{S C}$, the set of C^{∞} functions from $\mathbb{R}^{2 n} \times \mathbb{R}^{n}$ to \mathbb{R} which are strictly convex with respect to u (in the strong sense, of course, that the Hessian is positive definite). The precise result we show is more than Theorem 5: it shows that the bad subset is very small (has infinite codimension).

Theorem 1. There exists an open and dense subset O^{\prime} of $\mathcal{S C}$ (endowed with the C^{∞} Whitney topology) such that, if $f \in O^{\prime}$, then $\left(\mathcal{P}_{f}\right)$ does not admit minimizing controls u with a component u_{i} vanishing on a subinterval of $[0, T]$, except maybe if the associated trajectory on the subinterval is an equilibrium of the system. In addition, for every integer N, the set O^{\prime} can be chosen so that its complement has codimension greater than N.

Of course we assume $T>T_{\min }$, the minimum time. Again the proof is based upon Thom's transversality theorem, we will then make the computations in the spaces of jets. For a positive integer N and a pair $(X, u) \in \mathbb{R}^{2 n} \times \mathbb{R}^{n}$, we denote by $\mathcal{J}_{(X, u)}^{N}$ the space of N-jets at (X, u) of functions in $C^{\infty}\left(\mathbb{R}^{3 n}, \mathbb{R}\right)$.

Lemma 2. Let $f \in C_{s c}^{\infty}\left(\mathbb{R}^{3 n}, \mathbb{R}\right)$. Assume that the trajectory (X, u) minimizing $\left(\mathcal{P}_{f}\right)$ satisfies, on a subinterval I of $[0, T]$:

- $u_{i_{0}} \equiv 0$ for some $i_{0} \in\{1, \ldots, n\}$;
- $\dot{X} \neq 0$ (i.e., the restriction $X_{\mid I}$ contains no equilibrium of the system).

Then there exists $t \in I$ such that the N-jet $j_{(X(t), u(t))}^{N} f$ belongs to a semialgebraic subset of $\mathcal{J}_{(X(t), u(t))}^{N}$ of codimension greater than $N-2 n$.
Proof. Recall that, under the hypothesis of the lemma, there is a trajectory (X, u) minimizing $\left(\mathcal{P}_{f}\right)$. Moreover this trajectory is not the projection of a singular extremal, and its associated control u is continuous. Thus, applying Pontryagin's Maximum Principle on I, there exists a C^{1} function $P=(p, q)$: $I \rightarrow \mathbb{R}^{n} \times \mathbb{R}^{n}$ such that, for all $t \in I$:

$$
\begin{align*}
& \dot{P}(t)^{T}=-\frac{\partial H}{\partial X}(X(t), P(t), u(t)) \tag{P1}\\
& H(X(t), P(t), u(t))=\max _{v \in U} H(X(t), P(t), v)
\end{align*}
$$

where H is the normal Hamiltonian of the problem,

$$
H(X, P, \lambda, u)=p^{T} y+q^{T}(\phi(X)+N(x) u)-f(X, u)
$$

From (P1), the following holds on the interval I :

$$
\left\{\begin{align*}
\dot{p}^{T} & =-q^{T} \frac{\partial \phi}{\partial x}(X)-\frac{\partial f}{\partial x}(X, u), \tag{5}\\
\dot{q}^{T} & =-p^{T}-q^{T} \frac{\partial \phi}{\partial y}(X)-\frac{\partial f}{\partial y}(X, u) .
\end{align*}\right.
$$

On the other hand, (P2) implies that, for every $t \in I, u(t)$ satisfies the Karush-Kuhn-Tucker conditions: there exist Lagrange multipliers $\lambda^{+}(t), \lambda^{-}(t)$ in \mathbb{R}^{n} such that:

$$
\left\{\begin{array}{l}
N(x(t))^{T} q(t)-\frac{\partial f}{\partial u}(X(t), u(t))^{T}-\lambda^{+}(t)-\lambda^{-}(t)=0 \\
\lambda_{i}^{+}(t), \lambda_{i}^{-}(t) \geq 0, \quad i=1, \ldots, n \\
\lambda_{i}^{+}(t)\left(u_{i}(t)-u_{i}^{+}\right)=\lambda_{i}^{-}(t)\left(u_{i}(t)-u_{i}^{-}\right)=0, i=1, \ldots, n
\end{array}\right.
$$

Since the control u is continuous, we may assume without lack of generality that there exist a nonempty subinterval J of I and an integer $m \in\{0, \ldots, n-1\}$ such that:

- for $i=1, \ldots, m$, we have $\left.u_{i}(t) \in\right] u_{i}^{-}, u_{i}^{+}[$for every $t \in J$; in this case $\lambda_{i}^{+} \equiv \lambda_{i}^{-} \equiv 0$ and,

$$
\left(N(x)^{T} q\right)_{i}=\frac{\partial f}{\partial u_{i}}(X, u) \quad \text { on } J
$$

- for $i=m+1, \ldots, n-1, u_{i}$ is constant on J and equals to u_{i}^{-}or u_{i}^{+};
- $u_{n} \equiv 0$ vanishes on J (i.e., $i_{0}=n$); as a consequence, $\lambda_{n}^{+}=\lambda_{n}^{-}=0$ and,

$$
\left(N(x)^{T} q\right)_{n}=\frac{\partial f}{\partial u_{n}}(X, u) \quad \text { on } J .
$$

Denote by $\bar{v}=\left(v_{1}, \ldots, v_{m}\right)$ the first m coordinates of a vector $v \in \mathbb{R}^{n}$. Then the minimizing control can be written as $u(t)=\left(\bar{u}(t), u^{0}\right)$, where $u^{0} \in \mathbb{R}^{n-m}$ is constant, and,

$$
\begin{equation*}
\overline{N(x)^{T} q}=\frac{\partial f}{\partial \bar{u}}(X, u)^{T} \quad \text { on } J . \tag{6}
\end{equation*}
$$

Case 1. The matrix $\frac{\partial^{2} f}{\partial \bar{u}^{2}}(X, u)$ is invertible on a subinterval J^{\prime} of J.
It results from the Implicit Functions Theorem applied to Equation 6 that \bar{u} is C^{1} on J^{\prime} and, for all $t \in J^{\prime}$,

$$
\begin{aligned}
\dot{\bar{u}}(t)= & \frac{\partial^{2} f}{\partial \bar{u}^{2}}(X(t), u(t))^{-1}\left(\frac{d}{d t} \overline{N(x(t))^{T} q(t)}\right. \\
& \left.-\left(L_{F}-\sum_{i} u_{i}(t) L_{b_{i}}\right) \frac{\partial f}{\partial \bar{u}}(X(t), u(t))^{T}\right),
\end{aligned}
$$

where L_{F} and $L_{b_{i}}$ denote the Lie derivative with respect to respectively F and b_{i}. We use Equation 5 to eliminate $\dot{q}(t)$ in the expression

$$
\frac{d}{d t} \overline{N(x(t))^{T} q(t)}=\overline{D N(x(t))^{T}(y) q(t)}+\overline{N(x(t))^{T} \dot{q}(t)}
$$

and we obtain:

$$
\begin{align*}
& \dot{\bar{u}}(t)= Q_{X(t)}(p(t), q(t), u(t) ; \tag{7}\\
&\left.\frac{\partial^{2} f}{\partial \bar{u}_{i} \partial \bar{u}_{j}}, \frac{\partial^{2} f}{\partial \bar{u}_{i} \partial X_{j}}, \frac{\partial f}{\partial X_{i}} \text { at }(X(t), u(t))\right),
\end{align*}
$$

where Q_{X} is a rational function depending smoothly on X.
Fix now $s \in J^{\prime}$. Since $\dot{X}(t)=F(X(t))+\sum_{i} u_{i}(t) b_{i}(X(t))$ is never vanishing on J^{\prime}, we may assume, up to a local change of the coordinates $X=$ $\left(X_{1}, \ldots, X_{2 n}\right)$ on $\mathbb{R}^{2 n}$ near $X(s)$, that $F(X)+\sum_{i} u_{i}(s) b_{i}(X)=\frac{\partial}{\partial X_{1}}$. Differentiating $\left(N(x)^{T} q\right)_{n}=\frac{\partial f}{\partial u_{n}}(X, u)$ with respect to time near $t=s$ leads to

$$
\begin{aligned}
\frac{d}{d t}\left(N(x(t))^{T} q(t)\right)_{n}= & \frac{\partial^{2} f}{\partial u_{n} \partial X_{1}}(X(t), u(t)) \\
& +\sum_{i} \Delta u_{i}^{s}(t) L_{b_{i}} \frac{\partial f}{\partial u_{n}}(X(t), u(t)) \\
& +\sum_{i=1}^{m} \frac{\partial^{2} f}{\partial u_{n} \partial \bar{u}_{i}}(X(t), u(t)) \dot{\bar{u}}_{i}(t),
\end{aligned}
$$

where $\Delta u^{s}(t)=u(t)-u(s)$. We substitute the expressions Equation 7 of $\dot{\bar{u}}(t)$ and Equation 5 of \dot{q}_{n} into this equation, and we obtain, for t near s,

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial u_{n} \partial X_{1}}+ & R_{X}^{1}\left(\Delta u^{s} \frac{\partial^{2} f}{\partial u_{n} \partial X_{i}}\right. \\
& \left.\frac{\partial^{2} f}{\partial u_{i} \partial u_{j}}, \frac{\partial^{2} f}{\partial \bar{u}_{i} \partial X_{j}}, \frac{\partial f}{\partial \alpha_{i}}, p, q, u\right)=0,
\end{aligned}
$$

where R_{X}^{1} is a rational function with coefficients depending smoothly on X, and $\alpha_{i}, 1 \leq i \leq 3 n$, denotes the $i^{\text {th }}$ component of the vector $\alpha=(X, u)$.

Successive derivations (with substitution of $\dot{\bar{u}}(t)$ by Equation 7 and of \dot{p} and \dot{q} by Equation 5 at each step) and evaluation of the derivatives at $t=s$ lead to a system of equations of the form, for $k \geq 1$,

$$
\begin{aligned}
& \frac{\partial^{k+1} f}{\partial u_{n} \partial X_{1}^{k}}(X(s), u(s))+R^{k}(P(s), \\
& \\
& \left.\quad \frac{\partial^{j} f}{\partial \alpha_{i_{1}} \cdots \partial \alpha_{i_{j}}}(X(s), u(s)) ; j \leq k+1\right)=0
\end{aligned}
$$

where R^{k} is a rational function, and if $j=k+1$ then at least one of the $\alpha_{i_{\ell}}$ is a \bar{u}_{i}.

Let Ω_{1}^{N} be the set of N-jets $j_{(X(s), u(s))}^{N} f$ such that $\operatorname{det}\left(\frac{\partial^{2} f}{\partial \bar{u}^{2}}(X(s), u(s))\right) \neq 0$. It is an open subset of $\mathcal{J}_{(X(s), u(s))}^{N}$.

We have proved that $\left(j_{(X(s), u(s))}^{N} f, P(s)\right)$ belongs to $\psi_{1}^{-1}(0)$, where $\psi_{1}: \Omega_{1}^{N} \times$ $\mathbb{R}^{2 n} \rightarrow \mathbb{R}^{N-1}$ is the rational mapping which to a N-jet $j_{(X(s), u(s))}^{N} g \in \Omega_{1}^{N}$ and a vector $P \in \mathbb{R}^{2 n}$ associates

$$
\binom{\frac{\partial^{k+1} g}{\partial u_{n} \partial X_{1}^{k}}(X(s), u(s))+R^{k}(P,}{\left.\frac{\partial^{j} g}{\partial \alpha_{1} \cdots \partial \alpha_{j}}(X(s), u(s)) ; j \leq k+1\right)}_{1 \leq k \leq N-1} .
$$

This mapping is clearly surjective, therefore $\psi_{1}^{-1}(0)$ is a semi-algebraic subset of $\mathcal{J}_{(X(s), u(s))}^{N} \times \mathbb{R}^{2 n}$ of codimension $N-1$. The projection of $\psi_{1}^{-1}(0)$ on $\mathcal{J}_{(X(s), u(s))}^{N}$ is then a semi-algebraic subset of codimension greater than $N-2 n$, which moreover contains the N-jet $j_{(X(s), u(s))}^{N} f$.

Case 2. The matrix $\frac{\partial^{2} f}{\partial \bar{u}^{2}}(X, u)$ is never invertible on J.
In order to show that \bar{u} is C^{1} and to derive an expression for $\dot{\bar{u}}$, we need to introduce some notations. We define inductively a sequence of mappings $V^{\ell}: \mathbb{R}^{2 n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by:

- $V^{0}=\frac{\partial f^{T}}{\partial \bar{u}}$
- for a positive integer ℓ, the components of V^{ℓ} are:

$$
V_{k}^{\ell}= \begin{cases}V_{k}^{\ell-1} & \text { if } 1 \leq k \leq r_{\ell} \\ \operatorname{det}\left(\frac{\partial V_{i}^{\ell-1}}{\partial \bar{u}_{j}}\right)_{i, j=1, \ldots, r_{\ell}, k} & \text { if } r_{\ell}+1 \leq k \leq m\end{cases}
$$

where $r_{\ell}=r_{\ell}(X, u)$ is the rank of the matrix $\frac{\partial V^{\ell-1}}{\partial \bar{u}}(X, u)$.
By hypothesis, $r_{1}(X(t), u(t))$ is smaller than m for $t \in J$. Since $X(\cdot)$ and $u(\cdot)$ are continuous, up to a permutation of the indices $\{1, \ldots, m\}$, there is a subinterval J^{\prime} of J such that, for any $\ell \geq 1$,

- the rank $r_{\ell}(X(t), u(t))$ is constant on J^{\prime};
- the function

$$
\delta_{\ell}(X(t), u(t))=\operatorname{det}\left(\frac{\partial V_{i}^{\ell-1}}{\partial \bar{u}_{j}}(X(t), u(t))\right)_{1 \leq i, j \leq r_{\ell}}
$$

is never vanishing on J^{\prime};

- if $r_{\ell}<m$, then

$$
\begin{aligned}
V^{\ell}(X(t), u(t))= & \left(\left(N(x(t))^{T} q(t)\right)_{1}, \ldots,\right. \\
& \left.\left(N(x(t))^{T} q(t)\right)_{r_{1}}, 0, \ldots, 0\right) \text { for all } t \in J^{\prime} .
\end{aligned}
$$

Notice that an easy induction shows the following expression:

$$
\begin{equation*}
V_{k}^{\ell}=\delta_{1} \ldots \delta_{\ell} \frac{\partial^{\ell+1} f}{\partial \bar{u}_{k}^{\ell+1}}+G^{k, \ell} \tag{8}
\end{equation*}
$$

where $G^{k, \ell}$ is a polynomial function of the derivatives of the form $\frac{\partial^{j} f}{\partial \bar{u}_{i_{1}} \cdots \partial \bar{u}_{i_{j}}}$, with $j \leq \ell+1$, each $i_{l} \leq k$, and $\sum_{l} i_{l}<k(\ell+1)$.

Denote by L the largest integer such that $r_{L}<m$ (we set $L=+\infty$ if the latter condition is always satisfied). Then, for $\ell=1, \ldots, L, V_{m}^{\ell}(X, u) \equiv 0$ on J^{\prime}. If moreover $L<\infty$, there holds on J^{\prime},

$$
\begin{aligned}
& V^{L}(X, u)=\left(\left(N(x)^{T} q\right)_{1}, \ldots,\left(N(x)^{T} q\right)_{r_{1}},\right. \\
& 0, \ldots, 0) \text { and } \frac{\partial V^{L}}{\partial \bar{u}}(X, u) \text { invertible, }
\end{aligned}
$$

with $u(\cdot)=\left(\bar{u}(\cdot), u^{0}\right)$. It then results from the Implicit Functions Theorem that \bar{u} is C^{1} on J^{\prime}. Following exactly the argument of Case 1 , we obtain a system of equations of the form, for a fixed $s \in J^{\prime}$,

$$
\frac{\partial^{k+1} f}{\partial u_{n} \partial X_{1}^{k}}(X(s), u(s))+R_{k}^{\prime}=0, \quad k \geq 1
$$

where R_{k}^{\prime} is a rational function of $P(s)$ and of derivatives $\frac{\partial^{j} f}{\partial \alpha_{i_{1}} \cdots \partial \alpha_{i_{j}}}(X(s), u(s))$ such that $j \leq k+L$ and, if one of the $\alpha_{i_{\ell}}$ is u_{n}, then $j \leq k+1$ and $j=k+1$ implies that at least one of the other $\alpha_{i_{\ell^{\prime}}}$ is a \bar{u}_{i}.

Set $M=\min (L, N-1)$. Let Ω_{2}^{N} be the set of N-jets $j_{(X(s), u(s))}^{N} f$ such that:

$$
\delta_{1}(X(s), u(s)) \ldots \delta_{M}(X(s), u(s)) \neq 0
$$

It is thus an open subset of $\mathcal{J}_{(X(s), u(s))}^{N}$.
We have proved that $\left(j_{(X(s), u(s))}^{N} f, P(s)\right)$ belongs to $\psi_{2}^{-1}(0)$, where $\psi_{2}: \Omega_{2}^{N} \times$ $\mathbb{R}^{2 n} \rightarrow \mathbb{R}^{N-1}$ is the rational mapping which to $\left(j_{(X(s), u(s))}^{N} f, P(s)\right)$ associates

$$
\begin{aligned}
&\left(\left(\delta_{1} \ldots \delta_{\ell} \frac{\partial^{\ell+1} f}{\partial \bar{u}_{k}^{\ell+1}}(X(s), u(s))+G^{k, \ell}\right)_{1 \leq \ell \leq M}\right. \\
&\left.\left(\frac{\partial^{k+1} f}{\partial u_{n} \partial X_{1}^{k}}(X(s), u(s))+R_{k}^{\prime}\right)_{1 \leq k \leq N-M-1}\right)
\end{aligned}
$$

This mapping is clearly surjective, therefore $\psi_{2}^{-1}(0)$ is a semi-algebraic subset of $\mathcal{J}_{(X(s), u(s))}^{N} \times \mathbb{R}^{2 n}$ of codimension $N-1$. The projection of $\psi_{2}^{-1}(0)$ on $\mathcal{J}_{(X(s), u(s))}^{N}$ is then a semi-algebraic subset of codimension greater than $N-2 n$, which contains the N-jet $j_{(X(s), u(s))}^{N} f$.

Theorem 1 follows from Lemma 2 combined with standard transversality arguments.

Computation of Extremals in the 2-dof Case

We use the stratification of the $\left(u_{1}, u_{2}\right)$-plane with respect to the "sign of coordinates". Thus we have the following analysis.

1. In the strata $u_{1}, u_{2}>0$, the maximum of $\overline{\mathcal{H}}\left(u_{1}, u_{2}\right)$ is solution of the following system (setting $s_{1}=-1, s_{2}=-1$):

$$
\begin{aligned}
& 0=\frac{\partial \overline{\mathcal{H}}}{\partial u_{1}}= \\
& s_{1} \cdot\left|y_{1}\right|-2 \alpha_{1} \bar{H}_{11}\left(\overline { H } _ { 1 1 } \cdot \left[u_{1}-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
&\left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
&\left.+\bar{H}_{12} \cdot\left[u_{2}-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
&-2 \alpha_{2} \bar{H}_{21}\left(\overline { H } _ { 2 1 } \cdot \left[u_{1}-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
&\left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
&\left.+\bar{H}_{22} \cdot\left[u_{2}-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
&+q_{1} \bar{H}_{11}+q_{2} \bar{H}_{21}
\end{aligned}
$$

and,

$$
\begin{aligned}
& 0=\frac{\partial \overline{\mathcal{H}}}{\partial u_{2}}= \\
& s_{2} \cdot\left|y_{2}\right|-2 \alpha_{1} \bar{H}_{12}\left(\overline { H } _ { 1 1 } \cdot \left[u_{1}-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
&\left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
&\left.+\bar{H}_{12} \cdot\left[u_{2}-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
&-2 \alpha_{2} \bar{H}_{22}\left(\overline { H } _ { 2 1 } \cdot \left[u_{1}-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
&\left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
&\left.+\bar{H}_{22} \cdot\left[u_{2}-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
&+q_{1} \bar{H}_{12}+q_{2} \bar{H}_{22} .
\end{aligned}
$$

Regrouping the $u_{i}^{\prime} s$ all together, we get:

$$
\begin{aligned}
& \left(2 \alpha_{1} \bar{H}_{11}^{2}+2 \alpha_{2} \bar{H}_{21}^{2}\right) u_{1}+\left(2 \alpha_{1} \bar{H}_{11} \bar{H}_{12}+2 \alpha_{2} \bar{H}_{21} \bar{H}_{22}\right) u_{2} \\
& =s_{1} \cdot\left|y_{1}\right|-2 \alpha_{1} \bar{H}_{11}\left(\overline { H } _ { 1 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
& \left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
& \left.+\bar{H}_{12} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
& -2 \alpha_{2} \bar{H}_{21}\left(\overline { H } _ { 2 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
& \left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
& \left.+\bar{H}_{22} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
& +q_{1} \bar{H}_{11}+q_{2} \bar{H}_{21}
\end{aligned}
$$

and,

$$
\begin{aligned}
& \left(2 \alpha_{1} \bar{H}_{12} \bar{H}_{11}+2 \alpha_{2} \bar{H}_{22} \bar{H}_{21}\right) u_{1}+\left(2 \alpha_{1} \bar{H}_{12}^{2}+2 \alpha_{2} \bar{H}_{22}^{2}\right) u_{2} \\
& =s_{2} \cdot\left|y_{2}\right|-2 \alpha_{1} \bar{H}_{12}\left(\overline { H } _ { 1 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
& \left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
& \left.+\bar{H}_{12} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
& -2 \alpha_{2} \bar{H}_{22}\left(\overline { H } _ { 2 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
& \left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
& \left.+\bar{H}_{22} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
& +q_{1} \bar{H}_{12}+q_{2} \bar{H}_{22}
\end{aligned}
$$

Which is a system of the general form:

$$
\begin{aligned}
s_{1} \cdot\left|y_{1}\right|+C_{1}= & \left(2 \alpha_{1} \bar{H}_{11}^{2}+2 \alpha_{2} \bar{H}_{21}^{2}\right) u_{1} \\
& +\left(2 \alpha_{1} \bar{H}_{11} \bar{H}_{12}+2 \alpha_{2} \bar{H}_{21} \bar{H}_{22}\right) u_{2} \\
s_{2} \cdot\left|y_{2}\right|+C_{2}= & \left(2 \alpha_{1} \bar{H}_{12} \bar{H}_{11}+2 \alpha_{2} \bar{H}_{22} \bar{H}_{21}\right) u_{1} \\
& +\left(2 \alpha_{1} \bar{H}_{12}^{2}+2 \alpha_{2} \bar{H}_{22}^{2}\right) u_{2} .
\end{aligned}
$$

The solutions follow:

$$
\begin{align*}
u_{1}= & \frac{\left(\alpha_{1} \bar{H}_{12}^{2}+\alpha_{2} \bar{H}_{22}^{2}\right)\left(C_{1}+s_{1} \cdot\left|y_{1}\right|\right)}{2 \alpha_{1} \alpha_{2}\left(\bar{H}_{11} \bar{H}_{22}-\bar{H}_{12} \bar{H}_{21}\right)^{2}} \\
& -\frac{\left(\alpha_{2} \bar{H}_{21} \bar{H}_{22}+\alpha_{1} \bar{H}_{12} \bar{H}_{11}\right)\left(C_{2}+s_{2} \cdot\left|y_{2}\right|\right)}{2 \alpha_{1} \alpha_{2}\left(\bar{H}_{11} \bar{H}_{22}-\bar{H}_{12} \bar{H}_{21}\right)^{2}} \\
u_{2}= & \frac{-\left(\alpha_{1} \bar{H}_{11} \bar{H}_{12}+\alpha_{2} \bar{H}_{21} \bar{H}_{22}\right)\left(C_{1}+s_{1} \cdot\left|y_{1}\right|\right)}{2 \alpha_{1} \alpha_{2}\left(\bar{H}_{11} \bar{H}_{22}-\bar{H}_{12} \bar{H}_{21}\right)^{2}} \tag{9}\\
& +\frac{\left(\alpha_{1} \bar{H}_{11}^{2}+\alpha_{2} \bar{H}_{21}^{2}\right)\left(C_{2}+s_{2}\left|y_{2}\right|\right)}{2 \alpha_{1} \alpha_{2}\left(\bar{H}_{11} \bar{H}_{22}-\bar{H}_{12} \bar{H}_{21}\right)^{2}}
\end{align*}
$$

2. In the strata $u_{1}>0$ and $u_{2}<0$, the maximum is solution of the same system, and has the same expression (Equation 9), but taking $s_{1}=-1$ and $s_{2}=+1$.

3-4. In the stratas S_{3}, S_{4}, corresponding respectively to $\left(u_{1}<0, u_{2}<\right.$ $0),\left(u_{1}<0, u_{2}>0\right)$, we get the same expression taking respectively $\left(s_{1}=+1\right.$, $\left.s_{2}=-1\right),\left(s_{1}=+1, s_{2}=+1\right)$.
5. For the strata $u_{1}=0$ and $u_{2}>0$, we set $s_{2}=-1$. The maximum is given by:

$$
\begin{aligned}
& 0=\frac{\partial \overline{\mathcal{H}}}{\partial u_{2}}= \\
& s_{2} \cdot\left|y_{2}\right|-2 \alpha_{1} \bar{H}_{12}\left(\overline { H } _ { 1 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
&\left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
&\left.+\bar{H}_{12} \cdot\left[u_{2}-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
&-2 \alpha_{2} \bar{H}_{22}\left(\overline { H } _ { 2 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
&\left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
&\left.+\bar{H}_{22} \cdot\left[u_{2}-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
&+q_{1} \bar{H}_{12}+q_{2} \bar{H}_{22} .
\end{aligned}
$$

Regrouping the terms in u_{2} :

$$
\begin{aligned}
& \left(2 \alpha_{1} \bar{H}_{12}^{2}+2 \alpha_{2} \bar{H}_{22}^{2}\right) u_{2} \\
& =s_{2} \cdot\left|y_{2}\right|-2 \alpha_{1} \bar{H}_{12}\left(\overline { H } _ { 1 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
& \left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
& \left.+\bar{H}_{12} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
& -2 \alpha_{2} \bar{H}_{22}\left(\overline { H } _ { 2 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
& \left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
& \left.+\bar{H}_{22} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
& +q_{1} \bar{H}_{12}+q_{2} \bar{H}_{22}
\end{aligned}
$$

or,

$$
\left(2 \alpha_{1} \bar{H}_{12}^{2}+2 \alpha_{2} \bar{H}_{22}^{2}\right) u_{2}=s_{2} \cdot\left|y_{2}\right|+C_{2} .
$$

Therefore:

$$
u_{2}=\frac{s_{2} \cdot\left|y_{2}\right|+C_{2}}{2 \alpha_{1} \bar{H}_{12}^{2}+2 \alpha_{2} \bar{H}_{22}^{2}} .
$$

6. In the strata $u_{1}=0$ and $u_{2}<0$ the expression is similar, with $s_{2}=+1$.
7. In the strata $u_{1}>0$ and $u_{2}=0$, we set $s_{1}=-1$.

$$
\begin{aligned}
& 0=\frac{\partial \overline{\mathcal{H}}}{\partial u_{1}}= \\
& s_{1} \cdot\left|y_{1}\right|-2 \alpha_{1} \bar{H}_{11}\left(\overline { H } _ { 1 1 } \cdot \left[u_{1}-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
&\left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
&\left.+\bar{H}_{12} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
&-2 \alpha_{2} \bar{H}_{21}\left(\overline { H } _ { 2 1 } \cdot \left[u_{1}-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
&\left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
&\left.+\bar{H}_{22} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
&+q_{1} \bar{H}_{11}+q_{2} \bar{H}_{21} .
\end{aligned}
$$

Regrouping the u_{1} terms:

$$
\begin{aligned}
& \left(2 \alpha_{1} \bar{H}_{11}^{2}+2 \alpha_{2} \bar{H}_{21}^{2}\right) u_{1} \\
& =s_{1} \cdot\left|y_{1}\right|-2 \alpha_{1} \bar{H}_{11}\left(\overline { H } _ { 1 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
& \left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
& \left.+\bar{H}_{12} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
& -2 \alpha_{2} \bar{H}_{21}\left(\overline { H } _ { 2 1 } \cdot \left[-G_{1}+h \cdot\left(y_{2}^{2}+2 y_{1} y_{2}\right)\right.\right. \\
& \left.-B_{11} y_{1}-B_{12} y_{2}\right] \\
& \left.+\bar{H}_{22} \cdot\left[-G_{2}-h \cdot y_{1}^{2}-B_{21} y_{1}-B_{22} y_{2}\right]\right) \\
& +q_{1} \bar{H}_{11}+q_{2} \bar{H}_{21}
\end{aligned}
$$

or,

$$
\left(2 \alpha_{1} \bar{H}_{11}^{2}+2 \alpha_{2} \bar{H}_{21}^{2}\right) u_{1}=s_{1} \cdot\left|y_{1}\right|+C_{1} .
$$

From what:

$$
u_{1}=\frac{s_{1} \cdot\left|y_{1}\right|+C_{1}}{2 \alpha_{1} \bar{H}_{11}^{2}+2 \alpha_{2} \bar{H}_{21}^{2}} .
$$

8. In the strata $u_{1}<0$ and $u_{2}=0$, we get the same expression with $s_{1}=+1$.
9. On the last strata $u_{1}=u_{2}=0$, the maximum is obviously $u_{1}=u_{2}=0$.

Notice also that we know (Theorem 3) that the optimal control is continuous.
Then, we integrate Pontryagin's equations by finding the maximum of the Hamiltonian within the 9 expressions above, and checking in which region it is.

A trial and error procedure on the initial adjoint vector does the job.

