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Supplementary materials

1 Simulation overview

1.1 Conventions

Notations: In the equations describing changes in PIN and auxin concentra-
tions we use the Iverson notation [1, 2]: if ψ denotes a logic statement then,

[ψ] =

{
1 if ψ is True

0 otherwise

Supplementary movies: For each �gure demonstrating a system changing in
time, a movie showing the process dynamics is provided. These movies are
named after the Figures with supplementary letter �S� at the beginning (eg.
the movie corresponding to Figure 2B is called �VideoS2B.avi�).

PIN display conventions: The thickness of the line representing the PIN accu-
mulation at a cell membrane is proportional to the computed PIN concentration
at this membrane. However, high values are truncated to allow better inspection
of visual results. The minimal displayed value of PIN concentration is always
equal to αp/βp, whereas the higher value corresponds to the maximum displayed
concentration of PIN, which is 2αp/βp. All values of PIN exceeding this value
are capped to 2αp/βp, allowing a ratio of 200% between extreme values.

Auxin display conventions: Auxin concentrations below minimal (resp. above
maximal) threshold amin (resp. amax) are depicted in black RGB(0, 0, 0) (resp.
in green RGB(0, 255, 0)). Intermediate values of auxin concentrations are de-
picted with a double linear interpolation function: a percentage pmid of the
visible auxin range [amax, amin] de�nes the auxin concentration am for which
the colour should be intermediate RGB(0, 127, 0). Colours are then linearly
interpolated between amin and am and am and amax respectively to render the
colour of any auxin concentration within the interval [amax, amin]. Values for
parameters pmid, amax, amin are de�ned for each simulation in table 1.

Integration: The number of snapshots was speci�ed for each simulation, as
well as �xed step h which describes the time between each two consecutive
time-points used for integration. For each simulation a number of steps is also
given. This number is used to integrate the system with a given h between
taking a snapshot. For some simulations the number of steps may vary if the
objective is to obtain a quasi stable state between the snapshots (eg. simulation
of phyllotaxis). A stable state is reached when the change in IAA concentrations
in every cell becomes less than a prede�ned threshold value εmin (using L∞
norm). In such a case the time interval between each snapshot may be di�erent.
If it is the case it is speci�ed in the simulation details.
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Fig. 1: Plot showing the in�uence of the parameter change on the relative change
in frequency f/f9 in a 1D model. On x-axis: k, on y-axis: f/f0.

At each step a non-linear system of equations describing the �ux-based polar-
ization process is integrated using the SciPy package designed for ODE solving
[3]. This package wraps ODE PACK, which is a collection of Fortran solvers for
the initial value problem for Ordinary Di�erential Equation systems [4]. This
solver allowed us to specify the precision on given integration interval (the step
size is then adjusted automatically by solving algorithm).

1.2 Sensitivity analysis of the 1D �ux-based polarization
model

To test the sensitivity of the model results to variations of the model param-
eters, we made a sensitivity analysis on the 1D dynamic models of the type
presented in Figure 5 in the main text and depicted in 5F simulation described
below. We assume that the 1D medium is growing at constant velocity v0 from
the 1D tissue centre. Let us call f the frequency at which a new primordium
is generated during a particular simulation. f typically depends on the model
parameters: αp, βp, αa, βa, γa.γd.ω, CZsize. We de�ne a reference frequency f0
as the frequency corresponding to the model parameters de�ned in simulation
5F. To perform the analysis each parameter of the model is independently aug-
mented by a factor kε where k ∈ [−3,−2, ..., 5] and ε = 10%. The competence
zone size was also included in the tests, but due to its discrete nature it was
augmented by a speci�c factor (see Figure 1 for the exact values). The Figure
1 shows the dependency of the relative change in frequency f/fo with respect
to each parameter change.

The sensitivity analysis con�rms a number of intuitive predictions:

1. The increase of auxin synthesis αa (or decrease of auxin decay βa) increases
f . Results suggest that the model is very sensitive to the amount of auxin
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in the meristem. Too low auxin synthesis (change by more than 10%) or
too high degradation (change by more than 20%) stops the formation of
patterns. This can be noted by observing αa, βa curves.

2. The increase of auxin transport (passive γd or active γa) decreases f . More
e�cient transport depletes the auxin faster from the meristem surface,
increasing the inhibitory range of the primordium and increasing the time
between the initiation of the consecutive primordia.

3. The increase of PIN background insertion into the membrane αp (or de-
crease of PIN removal βp) increases the strength of the active transport,
therefore it decreases f . This can be observed in αp, βp curves.

4. The increase of competence zone size CZsize leads to an increase of f .
This observation is consistent with biology and other inhibitory �eld model
predictions [5, 6].

5. The increase of the primordium initiation threshold ω decreases f .

The sensitivity analysis of 1D �ux-based dynamic system shows that i) the
patterning capabilities of the model are kept for a range of parameter values
ii) auxin synthesis, auxin decay and the primordia initiation threshold have the
the biggest impact on the frequency f .

1.3 Sensitivity of the 2D �ux-based polarization model to
noise

The proposed mechanism of dynamic patterning depends on the detection of the
locations where the auxin concentration exceeds a given threshold ω. The cells
at this location di�erentiate and become sinks. We tested how sensitive this
model is to the random auxin �uctuations in the system. This was achieved
by i) adding noise to the already established auxin patterns and checking at
what level the noise was able to perturb the PIN polarization pattern (in a non-
growing tissue), ii) change the primordia initiation threshold ω in each cell by
adding a noise with controlled amplitude to check the stability of primordium
formation during development. The tests were performed on a system that was
able to generate spiral phyllotaxy (equations and parameters were set according
to Simulation 9A).

Let mi→j be the membrane in cell i at the interface with cell j and M denote
the set of all the membrane interfaces in the considered tissue. For each time t,
we denote Pm(t) the concentration of PIN in this m ∈M at time t.

In the �rst case, the arbitrary frame of Simulation 9A was chosen. This frame
was describing system state at reference time t0. Then auxin concentration was
modi�ed in each cell by adding a white noise of amplitude δ = k5% (for k ∈
{1, 2, .., 5}). Then the system of equations describing the PIN and auxin dynam-
ics was resolved, until a new stable state was reached. Then, the new PIN dis-
tributions P ′m(t0) were compared with the initial distributions Pm(t0) for every
m ∈M . The comparision between the simulation was done by comparing the av-
erage di�erence of PIN concentration s = (1/ |M |)

∑
m∈M |P ′m(t0)− Pm(t0)| /Pm(t0),



2 Simulations 4

where |M | denotes the size of M . As a result, we could observe that, the aver-
age di�erence of PIN concentration s was increasing with increasing values of k.
However, for each k, s was found less than 5% and the system reached a state
that was close to the original con�guration. This showed that the �ux-based
model is fairly robust to auxin level perturbation throughout the meristem.

In the second case the simulation was performed exactly as in Simulation 9A,
with one exception: the primordium initiation threshold ωi was de�ned in every
cell i as a mean threshold ω modi�ed by an additive white noise of amplitude
δ = ω2k% (k ∈ {1, 2, .., 5}). This threshold noise was modi�ed at every step
of the simulation. By increasing the noise with a �xed primordium initiation
threshold, we structurally change the speed at which primordia are detected,
which results in a change in the phyllotactic pattern. To avoid this situation, the
primordium initiation threshold ω was increased by ωδ. The results showed that
the system is robust for low noise amplitudes: for k ∈ {1, 2} the system was able
to reproduce the spiral pattern with minor errors. These errors corresponded
to occasional changes in spiral orientation (chirality) during development. The
system was fragile for higher noise (k > 2). In such cases, spiral patterns
were not maintained. This suggests that �ux-based polarization may require an
additional mechanisms to achieve high robust behaviour.

2 Simulations

2.1 The basic system of equations

The basic system of equations equations, which we use in the simulations are
de�ned as in the article:

∂ai

∂t
= −

∑
n∈Ni

Si→n

Vi
Ji→n + αa − βaai (1)

∂pi,n

∂t
= Φ (Ji→n) + αp − βppi,n (2)

Ji→n = γa (aipi,n − anpn,i) + γd (ai − an) (3)

ΦL(x) =

{
κx x ≥ 0
0 x < 0

(4)

ΦC(x) =

{
κx2 x ≥ 0
0 x < 0

(5)

In the forthcoming sections we report which basic equation is used and which
is modi�ed for a particular simulation. The parameters for the system can be
found in the supplementary Table 1.
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2.2 Figure 2A

Speci�cation: The cells which belong to Si were selected as described in the
main article. The simulation was run for a �xed amount of steps. The system
reached stability before the last step.

Model: We use equations 2, 4, we rede�ne 1, 3:

∂ai

∂t
=

(
−
∑

n∈Ni

Ji→n + αa − βaai

)
[i /∈ Si]

Ji→n = γa (aipi,n − anpn,i) ,

And we assume that Φ = ΦL.

2.3 Figure 2B

Model: The simulation di�ers from 2.2 only by modifying equation 1 in the
following way:

∂ai

∂t
= −

∑
n∈Ni

Ji→n + αa − (βa + β′a [i /∈ Si]) ai

All the parameters are exactly the same and can be found in the Table 1.

2.4 Figure 3A

Speci�cation: The cells which belong to Si were selected and the simulation
was run for a �xed amount of steps. The system reached stability before the
last step.

Model: We use equations 2, 3, 4, we rede�ne 1:

∂ai

∂t
=

(
−
∑

n∈Ni

Ji→n + αa − βaai

)
[i /∈ Si]

And we assume that Φ = ΦL.
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2.5 Figure 3B

Speci�cation: The cells which belong to Si were selected and the simulation
was run for �xed amount of steps. The system was stable after the last step.
The �gure presented in the text is not the last step of the simulation. The
system still develops and creates more complex vein pattern (with loops). This
evolution can be observed on the supporting movie.

Model: We use equations 2, 3, 5, we rede�ne 1:

∂ai

∂t
=

(
−
∑

n∈Ni

Ji→n + αa − βaai

)
[i /∈ Si]

And we assume that Φ = ΦC .

2.6 Figure 4A-4D

Model: We use equations 2, 3, 4, we rede�ne 1:

∂ai

∂t
=

(
−
∑

n∈Ni

Ji→n + αa − βaai

)
[i /∈ Si]

And we assume that Φ = ΦL.

2.7 Figure 5A-5F

Model: We use equations 2, 3, 4, we rede�ne 1:

∂ai

∂t
=

(
−
∑

n∈Ni

Ji→n + αa − βaai

)
[i /∈ Pr]

And we assume that Φ = ΦL.
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2.8 Figure 7A-7B

Speci�cation: The simulation was run in two variants: with and without a
centre. In case of � the simulation with a centre a subset of cells which belong
to Cz was chosen. These cells were degrading the auxin. The initial geometry
of the cells was acquired from confocal images. The simulation was run for 60
steps until it reached a stable state with a visible auxin maximum in the place
of the future initium.

Model: We use equations 2, 3, 4, we rede�ne 1:

∂ai

∂t
=

(
−
∑

n∈Ni

Si→n

Vi
Ji→n + αa − (βa + β′a [i /∈ Cz]) ai

)
[i /∈ Pr]

And we assume that Φ = ΦL.

2.9 Figure 9A-9E

Speci�cation: To simulate the in�uence of old primordia, each primordium
'leaving the virtual meristem through growth tagged the closest neighbour cell
with a special cell identity (yellow dots).. This property was propagated over a
given time. The cells tagged as such were acting as sinks but the sink strength
was gradually decreasing with time

Model: We use equations 2, 3, 4, we rede�ne 1:

∂ai

∂t
=

(
−
∑

n∈Ni

Si→n

Vi
Ji→n + αa − (βa + β′a [i /∈ Cz]) ai

)
[i /∈ Pr]

And we assume that Φ = ΦL.

2.10 Figure 9G-9I

Speci�cation: Cells with white dots are simulating old primordia and they
belong to Si set, cells with black dots are L1 cells and they belong to L1 set,
the cell with a blue dot is a new primordium and belongs to the Pr set (note: it
belongs to L1 set as well). We assume that the L1 cells are separated from the
inner cells except for the primordium cell. This cell is allowed to exchange the
auxin with both L1 and inner cells. The feedback from �ux on PIN polarisation
in L1 and inner cells is di�erent and it is modelled with a change inΦ function.
Also, the cells in L1 layer produce much more auxin than inner layer cells.
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Model: We use equations 3, 4, 5 we rede�ne 1, 2:

For cells i such as i ∈ L1:

∂ai

∂t
=

(
−
∑

n∈Ni

Si→n

Vi
Ji→n [n ∈ L1 ∨ i ∈ Pr] + (αa + αL1)− βaai

)
[i /∈ Si]

∂pi,j

∂t
= ΦL (Ji→j) [j ∈ L1] + ΦL (Ji→j) [j /∈ L1] + αp − βppi,j

For cells i such as i /∈ L1:

∂ai

∂t
=

(
−
∑

n∈Ni

Si→n

Vi
Ji→n [n /∈ L1 ∨ i ∈ Pr] + αa − βaai

)
[i /∈ Si]

∂pi,j

∂t
= ΦC (Ji→j) + αp − βppi,j

Parameters: α
L1 = 0.3

2.11 Figure 10C

Speci�cation: The simulation was run until the system reached a stable state.
In this state an auxin maximum was established in the root apex.

We use equations 3, 2, 5 we rede�ne 1:

∂ai

∂t
=

(
−
∑

n∈Ni

Si→n

Vi
Ji→n + αa − βaai

)
[i /∈ Si]

And we assume that Φ = ΦC .

Initial conditions: ∀i /∈ Si.ai = 0.3;∀i ∈ Si.ai = 0.0; pi.j = 1.0 if PIN exists in vivo else 0
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Parameter 2A 2B 3A 3B 4A-D 5A-F 7A-B 9A-E 9G-I 10C

αa 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.3 0.01* 0.0

βa 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.03 0.01 0.0

β′
a - 0.1 - - - - -/0.08 0.06 - -

αp 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0

βp 0.05 0.05 0.01 0.01 0.01 0.05 0.01 0.01 0.01 0.5

γa 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.125 0.1 100.0

γd - - 0.03 0.03 0.03 0.001 0.03 0.03 0.03 0.001

Φ L L L C L L L L L+C C

κL 0.15 0.15 0.2 - 1.3/1.5/1.7/2.0 0.15 0.18 0.11 0.09 -

κC - - - 1.3 - - - - 1.1 0.2

h 2.2 2.2 1.0 0.025 1.0 1.0 0.25 1.0 1.0 0.1

ε0 - - - - - 0.01 - 0.01 - -

init ai 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3

init pi,j
αp
βp

αp
βp

αp
βp

αp
βp

αp
βp

αp
βp

αp
βp

αp
βp

αp
βp

*

PIN max - - 2.0 1.0 2.0 - 2.0 2.0 2.0 1.0

snapshots 100 100 60 240 120 400 60 + 60* * 30 + 80* 2500

steps 100 100 10 400 10 - 10 - 10 10

ˆ
amin, amax

˜
- - [0, 5] [0, 5] [0, 5] - [0, 4.8] [0, 6.8] [0, 12] [0, 1]

pmid - - 0.94 0.94 0.94 - 0.9 0.7 0.6 0.5

Tab. 1: The simulation parameters. The �*� is used when the parameter is
changed in complex way (which is explained in details in the text), the
�/� means alternative values used in simulation and �-� means that the
value is not included in the experiment equations. The units for the
parameters were speci�ed in the main article, however to adjust them
to cellular world all them should be exchanged by µm andmol by µmol.
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