
Section 1 

Sensory and association cortex 

Visual system 

In systems neuroscience, two visual processing streams have been described, the ventral 

(occipital/temporal) and dorsal (occipital/parietal) stream [1,2]. The ventral stream has 

been shown to be involved in object and person recognition [3]. The dorsal stream is 

thought to be involved in supplying visual parameters for planning or executing actions 

[4,5]. For the visual ventral stream, it is well-established that there is a spatial hierarchy 

which progresses from occipital cortex towards inferior temporal areas [6]. At low levels 

of this hierarchy, simple visual features are processed, whereas higher levels are 

concerned with complex configurations of visual inputs like faces and objects [7]. Visual 

input is rarely static; i.e., the visual scene can change quickly due to saccadic and micro-

saccadic eye movements, or moving objects. Therefore, small and ‘simple’ features like 

contrast differences and edges are in constant motion, in retinotopic space. In other 

words, at low levels of the visual hierarchy, from the perspective of neuronal populations, 

visual features are transient. For example, there is evidence for temporal frequency-

specific maps in primate and human primary visual cortex [8,9]. Furthermore, Hasson et 

al. [10] have shown that visual areas are differentially responsive to the temporal scales of 

visual dynamics, in a hierarchical fashion, following a rostro-caudal gradient from 

primary visual cortex to extra-striate cortex and higher cortical areas. 

 

When ascending the hierarchy, classical receptive fields become larger and the temporal 

dynamics of spatially extended features become more protracted. This means that the 

hierarchy in the ventral stream can be described as spatiotemporal; see also [11]. This line 

of thought is supported by findings which shows that ‘mid-level’ visual areas in the 

visual ventral stream, the lateral-occipital complex (LOC), process motion-invariant 

features of rotating objects [12]. To do this LOC must have integrated visual information 

over space and, to attain motion-invariance, over time. 

 



Recently, Konen and Kastner [13] provided evidence for a hierarchy in the dorsal stream; 

i.e., high levels in parietal cortex represent invariant object properties. Critically, part of 

the dorsal stream is assumed to represent movement-relevant sensory (e.g. visual) 

trajectories [4]. To extract invariant information, high levels of the dorsal stream must 

integrate over ‘fast’ features inferred by lower levels.  

 

Support for a similar spatiotemporal hierarchy is presented in [14], which describes a 

hierarchical model for recognition of biological motion, involving activity in superior 

temporal sulcus (STS). The authors motivate their model using spatial considerations, but 

the computational operations (like temporal integration) make it a spatiotemporal model. 

Furthermore, a temporal integration model was used to show that activity in lateral 

intraparietal area (LIP) can be interpreted as part of a decision making process, about 

dynamic sensory input [15]. In summary, in a hierarchical model, one could consider both 

the visual dorsal and ventral streams as parallel and interacting spatiotemporal sub-

hierarchies [13,16,17]. 

 

Auditory system 

In the auditory system, a temporal, hierarchical organisation is widely accepted. Auditory 

information is highly structured in the temporal domain [18–20] and much research in 

this area tries to identify anatomical hierarchies pertaining to the different temporal scales 

of auditory input; e.g. [21,22]. Several authors have postulated the existence of auditory 

dorsal and ventral streams, which appear to pertain to ‘audition-for-action’ (dorsal) and 

‘audition-for-perception’ (ventral) [23–25]. A common theme of these and many other 

auditory studies is that temporal integration is necessary to obtain invariance with respect 

to features at specific time-scales. In addition, there is evidence for a hemispheric 

difference in the auditory time-scales processed by the lateralized auditory cortex: time-

scales in the right hemisphere seem to be slower (perception of tonal patterns) than 

homologous time-scales of the left hemisphere (speech processing), e.g., [26–28]. 

 

 



Somatosensory system 

For the somatosensory system (studied in rats), there are hints that a similar temporal 

hierarchy prevails [29]. Also, in humans, recent research shows that haptic input produces 

specific and predictable spatiotemporal sensory patterns: In the ‘cutaneous rabbit 

illusion’, temporal violations of predictions, i.e., deviation from a predicted haptic, 

spatiotemporal input pattern are exploited to generate an illusory percept [30]. The 

spatiotemporal illusion results in activity (as compared to appropriate control conditions) 

in primary somatosensory cortex, corresponding to the skin location of the illusory haptic 

input. This indicates a prediction error suggestive of a top-down modulation by higher 

level cortices coding the trajectory of the expected somatosensory input. 

 

Section 2 

Primary motor and premotor cortex 

Human movements are initiated and controlled over a relatively fast time-scale; eye 

movements like saccades are executed on a time-scale of 20 to 200 ms, [31], whereas 

body and limb movements evolve over ca. a hundred to a thousand ms [32]. By using 

movements an agent can optimise the free-energy bound on surprise by re-sampling 

sensory data and reducing prediction error at the lowest levels of the hierarchy. 

Therefore, in a temporal hierarchy, motor units should be concerned with dynamics at the 

time-scale of body movements. In support of this view, there is experimental evidence 

that neurons in the primary motor cortex of monkeys represent complex movement 

trajectories and predict the velocity of hand movements up to 100 ms into the future 

[33,34].  

 

Dorsal and ventral premotor areas are thought to be involved in various aspects of motor 

preparation, planning, execution and observation; e.g., [4,35]. Assuming a temporal 

hierarchy, premotor areas would represent the trajectories of motor units at a slower time-

scale than primary motor areas, probably for about a second into the future. It is also 

well-established that premotor areas are involved when observing action (sequences) 

performed by others [36]. Some accounts have explicitly made the point that premotor 



activity can be understood as prediction of future extero- and interoceptive input caused 

by future movements, e.g. [37,38].  

 

Section 3 
Rostral anterior cingulate cortex (ACC) 

If premotor areas encode dynamics over a time-scale of up to a few seconds, one might 

assume that the posterior part of rostral ACC (prACC), which lies rostrally to premotor 

areas, operates at an even slower time-scale. Many studies that report prACC activity use 

(learning) experiments, in which subjects make choices based on information presented 

in preceding trials; e.g., [39–41]. In these experiments, the effective time-scale of the 

representations (concepts) required for making decisions covers multiple trials, i.e., 

several seconds. In functional neuroimaging studies, prACC has been described as being 

involved in ‘monitoring’, ‘decision making’, ‘conflict resolution’ and ‘updating of 

internal states’. Although these functions may sound incompatible, they all describe 

functions that entail operations on internal states, in a hierarchy, evolving at a slow time-

scale, which cannot be reduced to short-term or instantaneous functions.  

 

Furthermore, we speculate that the time-scales of representations in the rostral ACC 

depend on which part, in the rostro-caudal direction, is involved. For faster time-scales 

(seconds), we would expect more posterior locations (i.e., prACC) to be implicated. 

Conversely, more rostral locations may operate at slower time-scales. This hypothesis is 

consistent with a meta-analysis of neuroimaging studies involving the anterior part of the 

rostral ACC (arACC) [42]: Tasks involving ‘person perception’, ‘mentalizing’1, and ‘self-

knowledge’ are attributed to arACC locations. All of these functions engage 

representations of an agent’s (self or other) actions. We speculate that arACC encodes 

concepts that represent causal trajectories over extended periods and endow the 

representation of actions (self or other) with a context. For example, predictions about a 

friend’s actions are constrained by conceptual representations of his/her intentions. It is 

                                                 
1 Mentalizing refers to the cognitive process necessary to predict other people’s behaviour in the future. 



not the actions themselves that are represented in arACC, but the context that renders the 

action of oneself or others predictable. 

Section 4 
Lateral prefrontal cortex 

There is a large literature on ‘cognitive control’ with respect to hierarchies in lateral 

prefrontal cortex. Three recent reviews summarise compelling findings that this hierarchy 

exhibits a rostro-caudal gradient [43–45]. Koechlin and Summerfield state that ‘…these 

data depict a hierarchically ordered executive system lying along the anterior-posterior 

axis of the lateral PFC, with control signals owing to events which occurred in the more 

and more distant past arising from successively more anterior cortical regions.’ As noted 

in [43] by Badre: ‘A recently popular hypothesis is that the rostro-caudal axis of 

prefrontal cortex supports a control hierarchy whereby posterior-to-anterior prefrontal 

cortex mediates progressively abstract, higher-order control.’ And Botvinick in [44] 

states: ‘…, the prefrontal hierarchy is understood as involving levels of increasing 

temporal abstraction…’. In short, there are compelling perspectives and empirical 

findings [45–49] that support the hypothesis that the lateral prefrontal cortex is 

hierarchically structured according to temporal scale.  

 

Section 5 
Orbitofrontal cortex 

Even more rostral to arACC lies the orbitofrontal cortex (OFC). The functionality of OFC 

is seemingly diverse. A short list contains: (i) signalling the affective value of stimuli (ii) 

encoding expectations of future reward, (iii) updating these expectations, (iv) 

contributing to decision making by using knowledge of the rules or structure of the 

decision problem [50]. In the following, we will sketch the idea how these functions can 

be expressed as operations on top-level representations in a cortical temporal hierarchy. 

 

OFC as the top level represents the temporally most stable environmental states, namely 

rules [51,52]. Their stability over an extended period of time, with respect to the agent’s 



actions, affords decision making processes (at any level of the hierarchy) an advantage. 

This is because specific aspects of future sensory input can be inferred, far into the future, 

without having seen much data. Clearly, rules must be well-selected, otherwise decision 

making can go astray. Critically, a malfunction at the top level (OFC) has consequences 

that effect all temporal scales, because subordinate cortical levels attempt to explain 

environmental states without being guided by the appropriate high-level concept [53]. An 

important finding, from lesion and functional studies, is that orbitofrontal cortex supports 

dynamic switching between rules [54,55]. For example, in the ‘reversal learning’ task, 

subjects have to switch between opposing rules [56]. These rules are hidden from the 

subject and have to be inferred from preceding data trials. At first glance, dynamic 

switching between rules seems to contradict the notion that OFC encodes temporally 

stable rules (see below). However, switching between temporally stable rules is a 

hallmark of multistable, nonlinear hierarchical systems that adjudicate among competing 

models of the environmental context, e.g. [57]. Once there is sufficient evidence against 

one rule, orbitofrontal cortex may switch dynamically to a more appropriate rule which 

allows for better prediction of the sensory input. Here, ‘evidence’ can be used in a precise 

way, under our theoretical treatment, because the log-evidence is negative surprise; 

ln ( ( ) | )p y a m F≥  and both are optimised under the free energy principle [10]. In other 

words, Eq. 5 describes exactly the neuronal dynamics that maximise the evidence for a 

particular model of environmental or experimental contingencies. Note that one can also 

observe dynamic switching between two slowly varying states in our simulations, see 

Fig. 3C. For surprising input it took the system some time to optimize the free energy. 

During this transient to a new (no input) state, the system exhibits a large prediction 

error. This transient rise in LFP activity can be interpreted as expression of switching 

from one dynamic state (perceiving a song) to another (no auditory input). This dynamic 

switching between slow representations might be an explanation why areas with slow 

time-scales (e.g., OFC) can rapidly switch between different stable concepts. This view 

of switching at ‘event boundaries’ is also supported by experimental findings in other 

domains, e.g., the auditory system or ‘cognitive control’ [47,58–60].  

 



At a high level of the hierarchy conceptual inference will subsume many modality-

specific representations. The representations in OFC may therefore provide predictions 

for several senses, particularly those that change relatively slowly such as interoceptive 

input.  For example, when we are hungry, the effect that eating has on olfaction, gustation 

and interoceptive input is probably the same throughout adult life [61,62]. In other words, 

the way our body reacts to eating represents a causal trajectory that is itself stable and 

predictable. It is not the act of eating itself that OFC encodes, but the predictable changes 

in the internal milieu on eating. This line of reasoning might explain why ‘decision 

making’ studies find that OFC activity signals the ‘value’ of a sensory outcome (typically 

‘rewarding’ food stimuli), while activity in rostral ACC (see above) represents the ‘value’ 

of an action [63–65]. 
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