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Effective models; motivation

To describe the dynamics of many of the control circuits listed in Table 1 (main
text), we consider two interacting regulators which are able to affect each other’s
production, while positively autoregulating their own expression. We further sup-
pose these regulators to be transcription factors acting as homodimers, as is the
case in bHLH proteins (e.g. Ac, Sc, Pax6, MyoG in Tables 1 and S1), leucine
zipper factors or some types of homeodomain proteins, such as the POU factor
Oct4 [1] or the caudal related protein Cdx2 [2]. Although many of the feedback
interactions found in cell differentiation contexts are mediated by additional tran-
scription factors, signals, etc., we seek to represent the basic dynamical features of
these switches with a plausible mathematical model and a minimal set of parame-
ters of biological significance. For instance, indirect regulation with the aid of an
intermediate species can be simplified, under the assumption that this intermedi-
ate is in equilibrium, to the same mathematical equations discussed here. Thus,
we start by writing the biochemical reactions for production and degradation of
four molecular species: protein and mRNA of each of the two components (X, Y )
of the control module. These reactions can be separated in fast and slow.

Fast equilibrium reactions

We assume that DNA-binding reactions and dimerization are fast. Furthermore,
they are lumped together in a single reaction term under the equilibrium assump-
tion. Since each component is regulated by its own product as well as by the
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partner’s, we consider in principle different promoter binding sites for X or Y
molecules. These sites can be independent, interacting or completely overlapping
as is the case in both prokaryotic [3] and eukaryotic transcription regulation [4],
giving rise to a potential combinatorial logic of gene expression [5, 6].

Px + 2X Kx
x←→ PxX2,

Px + 2Y
Kx

y←→ PxY2,

Py + 2Y Ky
y←→ PyY2,

Py + 2X Ky
x←→ PyX2,

(1)

Px + 2X + 2Y
Kx

xy←→ PxX2Y2,

Py + 2X + 2Y Ky
xy←→ PyX2Y2.

(2)

Here theK’s represent products of equilibrium constants, being this the product of
binding (protein-DNA) and dimerization constants, in Eqs. (1), or joint binding
constants, Ki

xy(i = x, y) in Eqs. (2). In the case of two independent promoter
sites, Ki

xy = Ki
x ×Ki

y, while for overlapping promoters, only one species can be
bound at a time and Ki

xy = 0.

Slow equations

Transcription, translation and degradation of both components are considered as
slow reactions. Explicitly,

Px
βx−→ Px +mx,

PxX2
ρxβx−→ PxX2 +mx,

PxY2
νxβx−→ PxY2 +mx,

PxX2Y2
µxβx−→ PxX2Y2 +mx,

mx
γx−→ mx +X,

mx
δmx−→ ∅,

X
δx−→ ∅, (3)
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and analogous equations for the Y species. Here βi(i = x, y) are the correspond-
ing basal transcription rates, ρi and νi the auto and crossregulation strengths re-
spectively, and µi the joint regulatory strength. For independent promoter sites
µi = ρi × νi. With the constraint that the total number of promoters (copy num-
ber) is fixed, P T

i = Pi + PiX + PiY2 + PiX2Y2, and using the fast equilibrium
reactions [Eqs. (1)-(2)] we obtain the time evolution of the four molecular species
considered here as

dmx

dt
= βxP

T
x

1 + ρxK
x
x ·X2 + νxK

x
y · Y 2 + µxK

x
xy ·X2 · Y 2

1 +Kx
x ·X2 +Kx

y · Y 2 +Kx
xy ·X2 · Y 2

− δmxmx,

dX

dt
= γxmx − δxX,

dmy

dt
= βyP

T
y

1 + ρyK
y
y · Y 2 + νyK

y
x ·X2 + µxK

x
xy ·X2 · Y 2

1 +Ky
x ·X2 +Ky

y · Y 2 +Ky
xy ·X2 · Y 2

− δmymy,

dY

dt
= γymy − δyY.

(4)

These are differential equations for the total number of proteins per cell. To con-
vert to cellular protein concentration one needs to divide by cell volume, [X] =
X/V . The time evolution for each species concentration is now

d[mx]

dt
= βx[P

T
x ]

1 + ρxk
x
x · [X2] + νxk

x
y · [Y 2] + µxk

x
xy · [X2] · [Y 2]

1 + kxx · [X2] + kxy · [Y 2] + kxxy · [X2] · [Y 2]
− δmx[mx],

d[X]

dt
= γx[mx]− δx[X],

d[my]

dt
= βy[P

T
y ]

1 + ρyk
y
y · [Y 2] + νyk

y
x · [X2] + µxk

x
xy · [X2] · [Y 2]

1 + kyx · [X2] + kyy · [Y 2] + kyxy · [X2] · [Y 2]
− δmy[my],

d[Y ]

dt
= γy[my]− δy[Y ],

(5)

where [P T
i ] is the total promoter concentration for each gene, and the deterministic

rate constants have been appropriately rescaled by cell volume for the series of
bimolecular reactions, i.e., kij = Ki

j×V 2 and kiij = Ki
ij×V 4, with {i, j} = {x, y}.

Cell growth and division can be taken into account in an approximate manner by
assuming an exponential law for growth [8], V (t) = V0 exp (kgt). The growth
rate is given by kg = ln(α)/Tccyc, where Tccyc is the mean division time and α a
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scale parameter giving the maximum increase in cell volume (typically α = 2).
Then cell division occurs when V (t = Tccyc) = αV0. Assuming that the total
number of promoters scales proportionally with the cell volume, and using for the
time evolution of the molecular concentrations d[X]

dt
= 1

V (t)

(
dX
dt
− [X]dV (t)

dt

)
, the

resultant equations are identical to Eqs. (5) except that the degradation rates for
mRNA and protein are now given by δ′mx,my = δmx,my+kg, δ′x,y = δx,y+kg, which
are effectively taken as a single parameter. For stable proteins, δx,y � kg and
degradation is just due to dilution by cell growth and division. Protein degradation
can be faster (e.g., by proteases or by sequestration or inactivation with different
molecular species), which implies that δx,y � kg and the growth term can be
neglected.

Scaled variables and quasi-steady state approximation

We want to reduce both the number of variables to make the system amenable
for mathematical and phase plane analysis, and the number of parameters to the
minimum set with biological significance. First, it is convenient to define dimen-
sionless mRNA and protein concentrations by

x =
√
kxx[X],

mx =
√
kxx[mx],

y =
√
kyy [Y ],

my =
√
kyy [my]. (6)

Eqs. (5) now become

dmx

dt
= βx

√
kxx[P T

x ]
1 + ρx · x2 + νxσx · y2 + µxσxy · x2 · y2

1 + x2 + σx · y2 + σxy · x2 · y2
− δmxmx,

dx

dt
= γxmx − δxx,

dmy

dt
= βy

√
kyy [P T

y ]
1 + ρy · y2 + νyσy · x2 + µyσyx · x2 · y2

1 + y2 + σy · x2 + σyx · x2 · y2
− δmymy,

dy

dt
= γymy − δyy,

(7)

with σi = kij/k
i
i (ratio of cross over self-binding rates) and σij = kiij/(k

i
i · kij)

(ratio of joint over independent rates for simultaneous binding of both species).
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We note that for completely overlapping promoter sites (XOR transcriptional gate)
σij = 0, whereas for independent promoter sites σij = σi × σj , µi = ρi × νi and
the non-linear production rates for mRNA are the product of two Hill functions,
one for each variable. Applying the standard quasi-steady state approximation
(QSSA, fast mRNA dynamics compared to protein dynamics), dmx

dt
= dmy

dt
∼ 0,

one readily obtains Eqs. (1) in the main text with

αi = βi[P
T
i ]
√
kii bi, (8)

where bi = γi/δmi is the burst parameter or translational efficiency.
To gain insight on the validity of this approximation, let as assume similar

production and degradation rates for both components, i.e., γx = γy ≡ γ, βx =
βy ≡ β, δx = δy ≡ δ and δmx = δmy ≡ δm. Rescaling time by the protein
degradation rate, τ = t · δ, Eqs. (7) can be written as

dmx

dτ
=

αx
b δ
f(x, y)−∆ ·mx,

dx

dτ
= ∆ · b ·mx − x,

dmy

dτ
=

αy
b δ
g(x, y)−∆ ·my,

dy

dτ
= ∆ · b ·my − y, (9)

where ∆ = δm/δ is the relative messenger-protein degradation rate. The vari-
ation of mRNA at short time scales can be obtained by considering the protein
concentration fixed. Then, from Eqs. (9) one sees that for constant protein values
mRNA decays as mx,y(τ) ∝ exp (−∆τ) while for constant messenger concen-
tration the decay in protein concentration is simply ∝ exp (−τ). Therefore it is
reasonable to expect that mRNA dynamics adapts much faster to protein changes
when ∆ >> 1. This is illustrated in Fig. S1. For ∆ = 10, the QSSA is a fairly
good approximation to the four-dimensional dynamics (compare black and red
lines), while for ∆ = 1 the two- and four-dimensional trajectories (black and blue
lines) separate, although they eventually converge to the same equilibrium state
in the long run. Indeed, we checked that the multistability domains in the phe-
notypic maps shown in Figures 2 and S3 are the same when calculated with the
four-variable model [11]. The effect of changing b is important when consider-
ing the stochastic dynamics [9]. In fact, experimental studies of stochastic gene
expression in single cells demonstrate that translational bursting is an important
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source of stochasticity in prokarytic [10] and eukaryotic gene expression when
coupled to transcriptional noise [12].

Stochastic simulations and parameter ranges

Provided that equilibrium and quasi-steady state approximations hold for the de-
terministic system, stochastic simulations using Gillespie’s method [13] can be
simplified in a similar vein [14, 15]. Therefore we used the four-dimensional
model Eqs. (5) as a starting point for the stochastic simulations. To have a full
correspondence with the simplified two-dimensional model, Eq. (1) in main text,
we need to specify the following parameters:

(1) Regulatory strengths (ρi, νi, µi), or fold-change in promoter activity once
the proper transcription factor is bound. These parameters span from 0 (to-
tal inhibition) to 100 for the case of strong activation. This range reflects
orders of magnitude typically found in both prokayotic and eukaryotic gene
regulation.

(2) Relative binding affinities both for individual(σi) and joint (σixy) species. σi
is varied between (0.01,2). A value of σi < 1 denotes higher binding affinity
of a given promoter for its own protein (and then the threshold for autoreg-
ulation is smaller than for cross-interaction) while σi > 1 corresponds to
the opposite situation. σixy is set to 0 for most of the paper calculations
(completely overlapping promoter sites) but it can range from this value to
σi × σj (independent promoter sites).

(3) We need also to specify the scaling factors kxx and kyy (promoter binding
constants for each species) in the deterministic case. Recall that these are
the product of dimerization and protein-DNA association constants. Here
we fix kxx = kyy = 10−3 nM−2 (a range 10−1 − 10−3 is typically found in
bacteria [16]). The stochastic rate constants are obtained from the determin-
istic ones as Kx

x = kxx/V
2, Ky

y = kyy/V
2, Kx

y = Kx
x · σx, Ky

x = Ky
y · σy,

Kx
xy = Kx

x · Kx
y · σxy and Ky

xy = Ky
y · Ky

x · σyx, where V represents cell
volume. In the stochastic simulations cell growth and division can be taken
into account by considering V as an additional random variable obeying the
equation dV/dt = kgV , until a maximum value is attained [17,18]. Here we
do not take into account the contribution of cell growth to gene expression
noise, and fix V = V0 · Ω in stochastic simulations, where V0 is a reference
cell volume including Avogadro’s number and Ω a scale factor giving the
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contribution of protein number or finite size effects to molecular noise [19].
For a given value of molecular concentrations, the greater the scaling factor
Ω the larger the number of molecules, i.e., noise is reduced. In our simula-
tions, we take V0 = 109l for simplicity (note that concentrations are in nM)
which implies a cell volume of 1.7 µm3. We also take Ω = 10 in most of
the simulations. The effect of finite size noise in the protein steady-state
distributions is illustrated in Figure S2 (compare black and red lines).

(4) Relative molecular stabilities. From the adimensional analysis of the four-
variable model, Eqs. (9), we also fix the ratio of protein/mRNA degradation
to a value ∆ = 10, which implies a ten times faster degradation rate for
mRNAs than for protein. Then we suppose that proteins are stable and
mainly decay by dilution due to cell growth. Assuming a protein half-life of
one hour (δx = δy = 1 h−1) then messengers are degraded on average every
six minutes, which are typical values of prokaryotes.

(5) Burst parameter or translational efficiency. We use bx = by = 1 for most
simulations (for a glimpse on the effect induced by translational efficiency
on molecular noise, compare black and blue lines in Figure S2).

(6) Finally, we specify the average protein production rate ai = αi/δi as for
the two-dimensional model Eq. (1). Setting the copy-number P T

x = P T
y =

1, then the basal transcription rates follow from the given parameters as
βi = ai · δi/(

√
Ki
i · P T

i · bi). Note that a ten-fold increase in translational
efficiency is coupled here to a ten-fold decrease in transcription and thus the
average number of proteins remains the same, but the number of messenger
molecules is reduced (mRNA noise). On the other hand, a ten-fold increase
in volume produces also a ten-fold increase in transcription and abundance
of proteins and mRNAs are increased in the same way (finite size noise).
The different effects of these two factors in the width of protein distributions
are shown in Figure S2.

Signals

We model signals as molecular species external to the circuits considered. As
such, they follow an independent dynamics that we approximate as a birth-death
process:

dS

dt
= αs − δs · S. (10)
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To create a signal pulse, we fix the degradation rate at δs = 1h−1. Initially, the
signal production rate is αs = 0. At a given time, the signal is produced at a steady
rate αs = seq · δs so that it quickly reaches their maximum value seq (see insets
in Fig. 5A). The signal is terminated at a later time when the source disappears
and αs is set to zero again. For the deterministic equations, s is the signal con-
centration and αS has units of nM.h−1. In the stochastic simulations, the noise in
the signal can be varied independently from the noise in the circuit components
defining the stochastic production rate αss = αs · Vs where Vs is a volume factor
changing the number of signal molecules. Signals are broadly considered affect-
ing the circuit components in two possible ways: fast, inducing post-translational
modifications of the X or Y proteins. In this case, the equations for (X, Y ) are
only modified by an extra linear degradation/production term originated from the
reactions

S +X
δs
x−→ S,

S + Y
δs
y−→ S,

S
αs

x−→ S +X,

S
αs

x−→ S + Y. (11)

Slow: signals may be transcription factors external to the circuit, that may act
repressing or activating the (X, Y ) components. Here we assume that indepen-
dent promoter sites are available for the signal molecules (although they could
also operate cooperatively with any of both species). Equations are now modified
according to the reactions.

PxS
τxβy−→ PxS +mx,

PyS
τyβy−→ PyS +my, (12)

where τx,y are the signal regulation strengths (τx,y < 1 for inhibitory signals,
τx,y > 1 for excitatory ones).

In the main text, we showed examples of signal processing with fast or post-
translational events. Similar computational properties can be obtained with slow
or transcriptional signals in the appropriate regimes. However, slow signals may
change the response dynamics and thus the discrimination performance of some
stimulus features. An example is the discrimination of biased stimulus strength in
stochastic decision switches (see Figure 4.C in main text). In a stochastic decision
switch, a symmetric expression state (a stable node) becomes unstable due to a
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subcritical pitchfork bifurcation (and then becomes a saddle point, with the unsta-
ble direction being perpendicular to the diagonal in the phase plane). Although
this bifurcation can be induced by both fast and slow signalling events, fast signals
usually promote faster dynamics along the unstable direction, and this results in a
faster discrimination of biased signal amplitudes. This is illustrated in Figure S6,
where a decision switch operating close to the pitchfork bifurcation discriminates
fast (Figure S6.A) and slow (Figure S6.B) inhibitory signals. One sees that not
only discrimination performance of fast signals is steeper, but also signal noise
affects this performance in a greater extent.

Role of autoregulation in symmetric progression switches

From the biological scenarios documented in the literature (see Table 1) it seems
that genetic architectures of mutual activation of key transcription factors with au-
toregulation operate as standard (symmetric) progression switches. One possible
reason inferred from our analysis is that, for moderate to strong crossinteractions,
autoregulation should be exceedingly high to generate the coexistence of asym-
metric expression states. What could be the role played by autoregulation in these
type of circuits? Here we have investigated two possible reasons, both confer-
ring flexibility to switch performance. One possibility is that, for a fixed cross-
interaction strength where the circuit is not able to operate as a switch (being in a
monostable regime), the modulation of autoactivatory loops may enable the sys-
tem to work as a switch. This is demonstrated in Figure S9. For a standard switch
without autoregulation (Figure S9.A) if we keep the crossinteraction-strength at
ν = 10, a (degradation) signal is not able to change the initial (high,high) ex-
pression state. For the same cross-interaction strength, and adding autoactivation
to both circuit components, in a proper range of autoregulation strength the cir-
cuit is able to work as a switch upon the same signal (Figure S9.B). The second
possibility is that autoregulation may change the combinatory of signals to which
a mutual-activation switch responds. In Figure S10, we show the response of a
mutual-activation architecture placed in a (high,high) expression state to indepen-
dent degradation signals in the X and Y components. In the case that there is no
autoregulation (Figure S10.A) the switch responds as a fuzzy OR gate (a signal
affecting only one component above a given threshold induces a change of expres-
sion state). However, by adding autoactivation we need the simultaneous action
of signals on both components (AND gate) to switch to the (low,low) expression
state.
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