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Text S1: Mathematical Results

1. Number of active reactions in typical steady states

The mass balance constraintsSv = 0 define the linear subspace NulS = {v ∈ R
N |Sv = 0}

(the null space ofS), which contains the feasible solution spaceM . However, the setM can

possibly be smaller than NulS because of the additional constraints arising from the environ-

mental conditions (the availability of substrates in the medium, reaction irreversibility, and cell

maintenance requirements). Therefore,M may have smaller dimension than NulS. If we de-

note the dimension ofM by d, there exists a uniqued-dimensional linear submanifold ofRN

that containsM , which we denote byLM . We can then use the Lebesgue measure naturally

defined onLM to make probabilistic statements, since we can define the probability of a subset

A ⊆ M as the Lebesgue measure ofA normalized by the Lebesgue measure ofM . In particu-

lar, we say thatvi 6= 0 for almost allv ∈ M if the set{v ∈ M | vi = 0} has Lebesgue measure

zero onLM . An interpretation of this is thatvi 6= 0 with probability one for an organism in a

random state under given environmental conditions. Using this notion, we prove the following

theorem on the reaction fluxes.

Theorem 1. If vi 6= 0 for somev ∈ M , thenvi 6= 0 for almost allv ∈ M .

Proof. Suppose thatvi 6= 0 for somev ∈ M . The setLi := {v ∈ LM | vi = 0} is a linear

submanifold ofLM , so we havedim Li ≤ dim LM . If dim Li = dim LM , then we have

Li = LM ⊇ M , implying that we havevi = 0 for anyv ∈ M , which violates the assumption.

Thus, we must havedim Li < dim LM , implying thatLi has zero Lebesgue measure onLM .

SinceM ⊆ LM , we haveMi := {v ∈ M | vi = 0} ⊆ {v ∈ LM | vi = 0} = Li, and thusMi

also has Lebesgue measure zero. Therefore, we havevi 6= 0 for almost allv ∈ M .

Theorem 1 implies that we can group the reactions and exchange fluxes into two categories:
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1. Always inactive: vi = 0 for all v ∈ M , and

2. Almost always active: vi 6= 0 for almost allv ∈ M .

Consequently, the numbern+(v) of active reactions satisfies

n+(v) = ntyp
+ := n − nm

0 − ne
0 for almost allv ∈ M, (1)

wherenm
0 is the number of inactive reactions due to the mass balance constraints (characterized

by Theorem 2) andne
0 is the number of additional reactions in the category 1 above, which

are due to the environmental conditions. Combining this result with the finding that optimal

states have fewer active reactions (see the main text), it follows that a typical statev ∈ M is

non-optimal.

2. Inactive reactions due to mass balance constraints

Let us define the stoichiometric coefficient vector of reaction i to be theith column of the sto-

ichiometric matrixS. We similarly define the stoichiometric coefficient vector of an exchange

flux. If the stochiometric vector of reactioni can be written as a linear combination of the

stoichiometric vector of reactions/exchange fluxesi1, i2, . . . , ik, we say thati is a linear com-

bination ofi1, i2, . . . , ik. We use this linear relationship to completely characterize the set of

all reactions that are always inactive due to the mass balance constraints, regardless of any ad-

ditionally imposed constraints, such as the availability of substrates in the medium, reaction

irreversibility, cell maintenance requirements, and optimum growth condition.

Theorem 2. Reactioni is inactive for allv satisfyingSv = 0 if and only if it is not a linear

combination of the other reactions and exchange fluxes.

Proof. We denote the stoichiometric coefficient vectors of reactions and exchange fluxes by

s1, . . . , sN . The theorem is equivalent to saying that there existsv satisfying bothSv = 0 and

vi 6= 0 if and only if si is a linear combination ofsk, k = 1, 2, . . . , N , k 6= i.

To prove the forward direction in this statement, suppose that vi 6= 0 in a statev satisfying

Sv = 0. By writing out the components of the equationSv = 0 and rearranging, we get

sjivi =
∑

k 6=i

(−vk)sjk, j = 1, . . . , m. (2)
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Sincevi 6= 0, we can divide this equation byvi to see thatsi is a linear combination ofsk, k 6= i

with coefficientsck = −vk/vi.

To prove the backward direction, suppose thatsi =
∑

k 6=i cksk. If we choosev so that

vk = ck for k 6= i andvi = −1, then for eachj, we have

(Sv)j =
∑

k

vksjk = visji +
∑

k 6=i

vksjk = −sji +
∑

k 6=i

cksjk = 0,

sov satisfiesSv = 0.

3. Number of active reactions in optimal states

The linear programming problem for finding the flux distribution maximizing a linear objective

function can be written in the matrix form:

maximize: cTv

subject to: Sv = 0, Av ≤ b, v ∈ R
N ,

(3)

whereA andb are defined as follows. If theith constraint isvj ≤ βj, theith row ofA consists

of all zeros except for thejth entry that is1, andbi = βj . If the ith constraint isαj ≤ vj , theith

row of A consists of all zeros except for thejth entry that is−1, andbi = −αj . A constraint

of the typeαj ≤ vj ≤ βj is broken into two separate constraints and represented inA andb as

above. The inequality between vectors is interpreted as inequalities between the corresponding

components, so if the rows ofA are denoted byaT
1 , aT

2 , . . . , aT
K (whereaT

i denotes the transpose

of ai), Av ≤ b represents the set ofK constraintsaT
i v ≤ bi, i = 1, . . . , K. By defining the

feasible solution space

M := {v ∈ R
N |Sv = 0, Av ≤ b}, (4)

the problem can be compactly expressed as maximizingcTv in M .

The duality principle (Best & Ritter, 1985) expresses that any linear programming problem

(primal problem) is associated with a complementary linearprogramming problem (dual prob-

lem), and the solutions of the two problems are intimately related. The dual problem associated
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with problem (3) is
minimize: bT u1

subject to: ATu1 + STu2 = c, u1 ≥ 0,

u1 ∈ R
K , u2 ∈ R

m,

(5)

where{u1,u2} is the dual variable. A consequence of the Strong Duality Theorem (Best & Rit-

ter, 1985) is that the primal and dual solutions are related via a well-known optimality condition:

v is optimal for problem (3) if and only if there exists{u1,u2} such that

Sv = 0, Av ≤ b, (6)

ATu1 + ST u2 = c, u1 ≥ 0, (7)

uT
1 (Av − b) = 0. (8)

Note that each component ofu1 can be positive or zero, and we can use this information to find

a set of reactions that are forced to be inactive under optimization, as follows. For any given

optimal solutionv0, Eq. (8) is equivalent tou1i(a
T
i v0 − bi) = 0, i = 1, . . . , K, whereu1i is

the ith component ofu1. Thus, ifui1 > 0 for a giveni, we haveaT
i v0 = bi, and we say that

the constraintaT
i v ≤ bi is binding at v0. In particular, if an irreversible reaction (vi ≥ 0) is

associated with a positive dual variable (u1i > 0), then the irreversibility constraint is binding,

and the reaction is inactive (vi = 0) at v0. In fact, we can say much more: we prove the

following theorem stating that such a reaction is actuallyrequired to be inactive for all possible

optimal solutionsfor a given objective functioncTv.

Theorem 3. Suppose{u1,u2} is a dual solution corresponding to an optimal solution of prob-

lem(3). Then, the setMopt of all optimal solutions of(3) can be written as

Mopt = {v ∈ M | aT
i v = bi for all i for whichu1i > 0}, (9)

and hence every reaction associated with a positive dual component is binding for all optimal

solutions inMopt.

Sketch of proof.Let v0 be the optimal solution associated with{u1,u2} and letQ denote the

right hand side of (9). Anyv ∈ Q is an optimal solution of (3), since straightforward verification

shows that it satisfies (6-8) with the same dual solution{u1,u2}. Thus, we haveQ ⊆ Mopt.
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Conversely, suppose thatv is an optimal solution of (3). Then,v can be shown to belong toH,

which we define to be the hyperplane that is orthogonal toc and containsv0, i.e.,

H := {v ∈ R
N | cT (v − v0) = 0}. (10)

This, together with the fact thatv satisfiesSv = 0 andAv ≤ b, from (6), can be used to show

thatv ∈ Q. Therefore, any optimal solution must belong toQ. Putting both directions together,

we haveQ = Mopt.

Thus, once we solve Eq. (3) numerically and obtain asinglepair of primal and dual solu-

tions (v0 and{u1,u2}), we can use the characterization ofMopt given in Eq. (9) to identify all

reactions that are required to be inactive (or active) for any optimal solutions. To do this we

solve the following auxiliary linear optimization problems for eachi = 1, . . . , N :

maximize/minimize: vi

subject to: Sv = 0, Av ≤ b, aT
i v = bi for all i for whichu1i > 0.

(11)

If the maximum and minimum ofvi are both zero, then the corresponding reaction is required

to be inactive for allv ∈ Mopt. If the minimum is positive or maximum is negative, then the

reaction is required to be active. Otherwise, the reaction may be active or inactive, depending

on the choice of an optimal solution. Thus, we obtain the numbersnopt
+ andnopt

0 of reactions

that are required to be active and inactive, respectively, for all v ∈ Mopt. The number of active

reactions for anyv ∈ Mopt is then bounded as

nopt
+ ≤ n+(v) ≤ n − nopt

0 . (12)

The distribution ofn+(v) within the bounds is singular: the upper bound in Eq. (12) is

attained for almost allv ∈ Mopt. To see this, we apply Theorem 1 withM replaced byMopt.

This is justified since we can obtainMopt from M by simply imposing additional equality con-

straints. Therefore, if we set aside thenopt
0 reactions that are required to be inactive (including

nm
0 andne

0 reactions that are inactive for allv ∈ M), all the other reactions are active for almost

all v ∈ Mopt. Consequently,

n+(v) = n − nopt
0 for almost allv ∈ Mopt. (13)
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We can also use Theorem 3 to further classify those inactive reactions caused by the opti-

mization as due to two specific mechanisms:

1. Irreversibility. The irreversibility constraint (vi ≥ 0) on a reaction can be binding (vi =

0), which directly forces the reaction to be inactive for all optimal solutions. Such inactive

reactions are identified by checking the positivity of dual components (u1i).

2. Cascading. All other reactions that are required to be inactive for allv ∈ Mopt are due

to a cascade of inactivity triggered by the first mechanism, which propagates over the

metabolic network via the stoichiometric and mass balance constraints.

In general, a given solution of problem (3) can be associatedwith multiple dual solutions. The

set and the number of positive components inu1 can depend on the choice of a dual solution, and

therefore the categorization according to mechanism is generally not unique. As an example,

consider a metabolic network containing a chain of two simple irreversible reactions,A
v1−→

B
v2−→ C. Since the two reactions are fully coupled via the mass balance constraint (v1 = v2

wheneverSv = 0), we can show that different combinations of dual components are possible

for a given optimal solution: (i)u11 > 0, u12 = 0; (ii) u11 = 0, u12 > 0; or (iii) u11 > 0, u12 > 0.

In each case, the set of reactions in the irreversibility category is different, and the number of

such reactions are different in case (iii). This comes from the fact that the same result (v1 =

v2 = 0) follows from forcingv1 = 0 only, v2 = 0 only, or both. Thus, we can interpret the non-

uniqueness of the categorization as the fact that differentsets of triggering inactive reactions

can create the same cascading effect on the reaction activity.

4. Typical linear objective functions

Since the feasible solution spaceM is convex, its “corner” can be mathematically formulated

as anextreme point, defined as a pointv ∈ M that cannot be written asv = ax + by with

a + b = 1, 0 < a < 1 andx,y ∈ M such thatx 6= y. Intuition from the two-dimensional

case (Fig. S1) suggests that for a typical choice of the objective vectorc such that Eq. (3) has

a solution, the solution is unique and located at an extreme point of M . We prove here that
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Figure S1: Optimum is typically achieved at a single extremepoint. The only exception is when
the objective vectorc is in the direction perpendicular to an edge, in which case all points on
the edge are optimal.

this is indeed true in general, as long as the objective function is bounded onM , and hence an

optimal solution exists.

Theorem 4. Suppose that the set of objective vectorsB = {c ∈ R
N | cTv is bounded onM}

has positive Lebesgue measure. Then, for almost allc in B, there is a unique solution of Eq.(3),

and it is located at an extreme point ofM .

Proof. For a givenc ∈ B, the functioncTv is bounded onM , so the solution setMopt = Mopt(c)

of Eq. (3) consists of either a single point or multiple points. SupposeMopt consists of a single

point v and it is not an extreme point. By definition, it can be writtenasv = ax + by with

a + b = 1, 0 < a < 1 andx,y ∈ M such thatx 6= y. Sincev is the only solution of Eq. (3),x

andy must be suboptimal, and hence we havecTx < cTv andcTy < cTv. Then,

cTy = cT (v − ax)/b

= (cTv − acTx)/b

> (cTv − acTv)/b

=
1 − a

b
cTv

= cTv,
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and we have a contradiction with the fact thatv is an optimum. Therefore, ifMopt consists of a

single point, it must be an extreme point ofM .

We are left to show that the set ofc ∈ B for which Mopt(c) consists of multiple points

has Lebesgue measure zero. By Theorem 3, for a givenc, there exists a set of indicesI ⊆

{1, . . . , K} such thatMopt(c) = QI := {v ∈ M | aT
i v = bi for all i ∈ I}, so

{c ∈ R
N |Mopt(c) contains multiple points} ⊆

⋃

I

{c ∈ R
N |QI = Mopt(c)}, (14)

where the union is taken over allI ⊆ {1, . . . , K} for whichQI contains multiple points. Ifc is

in one of the sets in the union in Eq. (14), the setQI , being the set of all optimal solutions, is

orthogonal toc. Hence,c is in Q⊥
I , the orthogonal complement ofQI defined as the set of all

vectors orthogonal toQI . Therefore,

{c ∈ R
N |Mopt(c) contains multiple points} ⊆

⋃

I

Q⊥
I , (15)

BecauseQI is convex, it contains multiple points if and only if its dimension is at least one,

implying that eachQ⊥
I in the union in Eq. (15) has dimension at mostN − 1, and hence has

zero Lebesgue measure inRN . Since there are only a finite number of possible choices for

I ⊆ {1, . . . , K}, the right hand side of Eq. (15) is a finite union of sets of Lebesgue measure

zero. Therefore, the left hand side also has Lebesgue measure zero.
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