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Supporting Information
Text S1: Mathematical Results

1. Number of activereactionsin typical steady states

The mass balance constraiste = 0 define the linear subspace Mik= {v € RY |Sv = 0}
(the null space o8), which contains the feasible solution spade However, the sed/ can
possibly be smaller than NBIbecause of the additional constraints arising from therenvi
mental conditions (the availability of substrates in thediom, reaction irreversibility, and cell
maintenance requirements). Therefal€é may have smaller dimension than NulIf we de-
note the dimension af/ by d, there exists a uniqué-dimensional linear submanifold &
that containsV/, which we denote by.,,. We can then use the Lebesgue measure naturally
defined onl,, to make probabilistic statements, since we can define tHeapitity of a subset
A C M as the Lebesgue measuredhormalized by the Lebesgue measurelbf In particu-
lar, we say that; # 0 for almost allv € M if the set{v € M |v; = 0} has Lebesgue measure
zero onL,,. An interpretation of this is that; # 0 with probability one for an organism in a
random state under given environmental conditions. Udiigyrtotion, we prove the following

theorem on the reaction fluxes.
Theorem 1. If v; # 0 for somev € M, thenv; # 0 for almost allv € M.

Proof. Suppose that; # 0 for somev € M. The setl; := {v € Ly/|v; = 0} is a linear
submanifold ofL;;, so we havelim L; < dim Lj;. If dim L; = dim L,,;, then we have
L; = Ly; O M, implying that we have; = 0 for anyv € M, which violates the assumption.
Thus, we must havéim L; < dim L,,, implying thatL; has zero Lebesgue measureioy.
SinceM C Ly, we haveM; := {v € M |v; =0} C {v € Ly |v; =0} = L;, and thus\/;
also has Lebesgue measure zero. Therefore, welhag¥® for almost allv € M. O

Theorem 1 implies that we can group the reactions and exetfaings into two categories:
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1. Always inactivev; = 0 forall v € M, and

2. Almost always activey; # 0 for almost allv € M.

Consequently, the number, (v) of active reactions satisfies

ny(v) =n :=n—nl —n¢ foramostallv € M, (1)

whereng" is the number of inactive reactions due to the mass balantstreints (characterized
by Theorem 2) ana, is the number of additional reactions in the category 1 apasech
are due to the environmental conditions. Combining thisltesith the finding that optimal
states have fewer active reactions (see the main text)loife that a typical state € M is
non-optimal.

2. Inactivereactions dueto mass balance constraints

Let us define the stoichiometric coefficient vector of reactito be theith column of the sto-
ichiometric matrixS. We similarly define the stoichiometric coefficient vectéao exchange
flux. If the stochiometric vector of reactioncan be written as a linear combination of the
stoichiometric vector of reactions/exchange fluxes,, .. ., iy, we say that is a linear com-
bination ofiy, is, ..., 4. We use this linear relationship to completely charactetie set of
all reactions that are always inactive due to the mass balemstraints, regardless of any ad-
ditionally imposed constraints, such as the availabilitysabstrates in the medium, reaction
irreversibility, cell maintenance requirements, and mpiin growth condition.

Theorem 2. Reaction: is inactive for allv satisfyingSv = 0 if and only if it is not a linear
combination of the other reactions and exchange fluxes.

Proof. We denote the stoichiometric coefficient vectors of reastiand exchange fluxes by
s1,...,Sy. The theorem is equivalent to saying that there existatisfying bothfSv = 0 and
v; # 0ifand only if s; is a linear combination of;,, k = 1,2,..., N, k # i.

To prove the forward direction in this statement, suppoaéeith 0 in a statev satisfying
Sv = 0. By writing out the components of the equati®m = 0 and rearranging, we get

;iU = Z(—vk)sjk, j=1,...,m. (2)
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Sincev; # 0, we can divide this equation hy to see thas; is a linear combination of;, k£ # ¢
with coefficientse, = —uy /v;.

To prove the backward direction, suppose that= Zk# cpsi. If we choosev so that

vx = ¢ for k # i andv; = —1, then for eacly, we have
(SV)j = kasjk = UZ'SjZ' + ZUijk = —sz' + Z Cijk = 0,
k k#i k#i
sov satisfiesSv = 0. O

3.  Number of activereactionsin optimal states

The linear programming problem for finding the flux distribatmaximizing a linear objective
function can be written in the matrix form:

maximize: c’v

(3)

subjectto: Sv=0, Av<b, veR",

whereA andb are defined as follows. If th&h constraint is; < 3;, theith row of A consists
of all zeros except for thgth entry that isl, andb, = ;. If the ith constraint isy; < v;, theith
row of A consists of all zeros except for thth entry that is—-1, andb, = —a;. A constraint
of the typea; < v; < 3; is broken into two separate constraints and representddandb as
above. The inequality between vectors is interpreted apiaéies between the corresponding
components, so if the rows df are denoted by! , aZ | ... a% (wherea! denotes the transpose
of a;), Av < b represents the set &€ constraints’v < bv;,7 = 1,..., K. By defining the
feasible solution space

M :={veRY|Sv=0, Av < b}, (4)

the problem can be compactly expressed as maximiZingn M.

The duality principle (Best & Ritter, 1985) expresses thgt bnear programming problem
(primal problem) is associated with a complementary liragramming problem (dual prob-
lem), and the solutions of the two problems are intimatelgtesl. The dual problem associated



with problem (3) is
minimize: bl
subjectto: ATu; +STuy, =c, uy >0, (5)
u; € R u, e R™,
where{u;, u,} is the dual variable. A consequence of the Strong Dualityoféra (Best & Rit-
ter, 1985) is that the primal and dual solutions are related well-known optimality condition:
v is optimal for problem (3) if and only if there exis{si;, u,} such that

Sv =0, Av < b, (6)
ATy, +STu, =c¢, uy >0, (7)
u! (Av — b) = 0. (8)

Note that each componentaf can be positive or zero, and we can use this information to find
a set of reactions that are forced to be inactive under opditioin, as follows. For any given
optimal solutionv,, Eq. (8) is equivalent ta;(al vo — b;) = 0,7 = 1,..., K, whereu,; is
theith component ofy;. Thus, ifu; > 0 for a giveni, we havea’v, = b;, and we say that
the constraink? v < ¥, is bindingat v,. In particular, if an irreversible reactiom;(> 0) is
associated with a positive dual variablg,(> 0), then the irreversibility constraint is binding,
and the reaction is inactive,,( = 0) at vo. In fact, we can say much more: we prove the
following theorem stating that such a reaction is actuatyuired to be inactive for all possible
optimal solutiondor a given objective function’v.

Theorem 3. Supposdu;, u,} is a dual solution corresponding to an optimal solution ofipr
lem(3). Then, the set/, of all optimal solutions 0{3) can be written as

Mopt = {v € M |a] v = b, for all i for whichu,; > 0}, 9)

and hence every reaction associated with a positive duapoment is binding for all optimal
solutions inMpt.

Sketch of proofLet v, be the optimal solution associated with,, u,} and let) denote the
right hand side of (9). Any € @) is an optimal solution of (3), since straightforward veation
shows that it satisfies (6-8) with the same dual solufiap, u,}. Thus, we have) C M.
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Conversely, suppose thatis an optimal solution of (3). Ther, can be shown to belong td,

which we define to be the hyperplane that is orthogonaldad contains, i.e.,
H:={veR"|c"(v—vy) =0} (10)

This, together with the fact that satisfiesSv = 0 andAv < b, from (6), can be used to show
thatv € Q. Therefore, any optimal solution must belongloPutting both directions together,

Thus, once we solve Eq. (3) numerically and obtasirgyle pair of primal and dual solu-
tions (vo and{u;, u,}), we can use the characterization/dfy given in Eq. (9) to identify all
reactions that are required to be inactive (or active) for gptimal solutions. To do this we
solve the following auxiliary linear optimization problenfor eachi = 1,..., N:

maximize/minimize: v;

(11)

subject to: Sv =0, Av < b, al'v = b, for all i for whichu; > 0.
If the maximum and minimum of; are both zero, then the corresponding reaction is required
to be inactive for allv € Moy If the minimum is positive or maximum is negative, then the
reaction is required to be active. Otherwise, the reactiay be active or inactive, depending
on the choice of an optimal solution. Thus, we obtain the remsh?™ andn™ of reactions
that are required to be active and inactive, respectivetyall v € M,y The number of active
reactions for any € Mgy is then bounded as

nipt <ny(v)<n-— ngpt. (12)

The distribution ofn (v) within the bounds is singular: the upper bound in Eq. (12) is
attained for almost alv € Mg, To see this, we apply Theorem 1 willd replaced byMop:.
This is justified since we can obtaivi,, from M by simply imposing additional equality con-
straints. Therefore, if we set aside taln@?t reactions that are required to be inactive (including
ng' andnf reactions that are inactive for alle 1), all the other reactions are active for almost

all v e My, Consequently,
ny(v)=n—n foralmostallv € Mepy. (13)
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We can also use Theorem 3 to further classify those inactiaetions caused by the opti-

mization as due to two specific mechanisms:

1. Irreversibility. The irreversibility constraint. > 0) on a reaction can be binding; (=
0), which directly forces the reaction to be inactive for gdtional solutions. Such inactive
reactions are identified by checking the positivity of duaihponentsa;;).

2. Cascading. All other reactions that are required to be inactive fornale M, are due
to a cascade of inactivity triggered by the first mechanistictv propagates over the
metabolic network via the stoichiometric and mass balanosttaints.

In general, a given solution of problem (3) can be associatddmultiple dual solutions. The
set and the number of positive components;ican depend on the choice of a dual solution, and
therefore the categorization according to mechanism isrmgdlg not unique. As an example,
consider a metabolic network containing a chain of two seripleversible reactionsd -

B 2, C. Since the two reactions are fully coupled via the mass lsal@onstraint«; = v,
whenevelSv = 0), we can show that different combinations of dual composhian¢ possible
for a given optimal solution: (i, > 0, u1s = 0; (ii) w1y = 0, uge > 0; or (iii) uy; > 0, u19 > 0.

In each case, the set of reactions in the irreversibilitegaty is different, and the number of
such reactions are different in case (iii). This comes framfact that the same result, (=

vy = 0) follows from forcingv; = 0 only, v, = 0 only, or both. Thus, we can interpret the non-
uniqueness of the categorization as the fact that diffesets of triggering inactive reactions

can create the same cascading effect on the reaction gctivit

4. Typical linear objectivefunctions

Since the feasible solution spagé is convex, its “corner” can be mathematically formulated
as anextreme pointdefined as a point € M that cannot be written ag = ax + by with
a+b=10<a < landx,y € M such thatk # y. Intuition from the two-dimensional
case (Fig. S1) suggests that for a typical choice of the @lageeectorc such that Eq. (3) has
a solution, the solution is unique and located at an extreona pf //. We prove here that



-—_— Level curves of an
objective function

Figure S1: Optimum is typically achieved at a single extr@miat. The only exception is when
the objective vectoe is in the direction perpendicular to an edge, in which cabpahts on
the edge are optimal.

this is indeed true in general, as long as the objective fones bounded o/, and hence an
optimal solution exists.

Theorem 4. Suppose that the set of objective vectBrs= {c € RY | c’v is bounded ori/}
has positive Lebesgue measure. Then, for almostiallB, there is a unique solution of E(B),
and it is located at an extreme point bf.

Proof. Foragiverc € B, the functionc” v is bounded ord/, so the solution set/op; = Mopi(c)
of Eq. (3) consists of either a single point or multiple psirbupposeé/,; consists of a single
point v and it is not an extreme point. By definition, it can be writesv = ax + by with
a+b=1,0<a< 1andx,y € M such that # y. Sincev is the only solution of Eq. (3)x
andy must be suboptimal, and hence we ha¥& < c’v andc’y < ¢’v. Then,

cly = cf(v—ax)/b

= (c'v—ac’x)/b

> (c'v—ac’v)/b
l—a ,

= —cv

= clv,
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and we have a contradiction with the fact thas an optimum. Therefore, i/, consists of a
single point, it must be an extreme point/af.

We are left to show that the set of € B for which Myu(c) consists of multiple points
has Lebesgue measure zero. By Theorem 3, for a giyehere exists a set of indicds C
{1,..., K} such thatMyp(c) = Q := {v € M |alv =10 foralli € I}, so

{c € RN | Mom(c) contains multiple points C U{c ERY|Qr = Mow(c)},  (14)
I

where the union is taken over dlIC {1, ..., K'} for which @Q; contains multiple points. I¢ is

in one of the sets in the union in Eq. (14), the &t being the set of all optimal solutions, is
orthogonal toc. Hencec is in Q7, the orthogonal complement &f; defined as the set of all
vectors orthogonal t@);. Therefore,

{c € RN | Mop(c) contains multiple pointsC | ] @7, (15)
I

Becausea)); is convex, it contains multiple points if and only if its dim&on is at least one,
implying that each{ in the union in Eq. (15) has dimension at m@ét— 1, and hence has
zero Lebesgue measureliti¥. Since there are only a finite number of possible choices for
I C {1,..., K}, the right hand side of Eq. (15) is a finite union of sets of lsghue measure
zero. Therefore, the left hand side also has Lebesgue neczesiar. O
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