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In this Supporting Information we provide the following additional details:

• Bistability of the PU.1–GATA-1 system – mathematical aspects.

• An irreversible bistable PU.1–GATA-1 switch.

• Is it necessary for C/EBPα to be autoregulating for irreversibility of the
network?

• Consequences of autoregulation of FOG-1 for the PU.1–GATA-1 switch.

• Can FOG-1 play the role of the X gene?

• Circuit properties of the GATA-1–PU.1 switch due to self-association of

GATA-1.
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Bistability of the PU.1–GATA-1 system

Mathematical properties. We explore the consequences of the particular type of activa-
tion and repressive bindings that we have assumed for PU.1 and GATA-1 on the dynamics
of the network. We show that the PU.1–GATA-1 system as described with heterodimeric
bindings for repression and monomeric bindings for activation, cannot display bistable be-
havior. This can be seen from solving Eq. (3)1 for the steady state concentrations [P] and
[G]. One gets

[G] =
α1 + α2[G]

1 + β1 + β2[G] + β3[G][P ]
, (S1)

[P ] =
δ1 + δ2[P ]

1 + ǫ1 + ǫ2[P ] + ǫ3[G][P ]
,

where the αi and δi (i = 1, 2) are renormalized constants by dividing with the degradation
constants γi, and for simplicity A, B = 1. Solving for [P] in the first equation and then
replacing for [P] in the second, leads to the following fifth order polynomial equation for [G],

p([G]) = ǫ3β2
2[G]5 + (ǫ2β2

2 − 2β2ǫ3s1 + s2β2β3 − δ1β3
2)[G]4

+ (−2s1β2ǫ2 + s1
2ǫ3 − 2α1β2ǫ3 − s1s2β3)[G]3

+ (ǫ2s1
2 − 2α1β2ǫ2 + 2s1α1ǫ3 − s2β3α1)[G]2 (S2)

+ (2s1α1ǫ2 + α1
2ǫ3)[G] + ǫ2α1

2

where s1 = α2 − 1 − β1 and s2 = δ2 − 1 − ǫ1. The five solutions to p([G]) =0 are difficult to
obtain analytically. For the bistability behavior, we require exactly 3 positive solutions. The
other two solutions could be either negative or a complex conjugate pair. To analyze the
qualitative nature of the solutions we use the Descartes Sign Rule 2, which states: Counting
the number of sign changes (N) that occur as we read each of the terms of a polynomial,
including the ones with missing exponent, one can at most have N , N −2, N −4 ... positive
solutions (the number of solutions are reduced by 2, since one must account for complex con-
jugate pairs with positive real parts). By inspection of Eq. (S2), the coefficients multiplying
[G]5 and [G]0 are positive. This implies that sign changes can occur for the coefficients of
[G]4, [G]3, [G]2 and [G]1. There are therefore 16 possibilities for these sign changes. For each
of these we apply Descartes Rule. For example, in the case where the coefficients for [G]4

and [G]2 are both negative, we obtain the following structure for the polynomial equation,
where only the signs of the coefficients are displayed

p([G]) = [G]5 − |(...)|[G]4 + |(...)|[G]3 − |(...)|[G]2 + |(...)|[G] + |(...)|. (S3)

There are in total 4 sign changes. Therefore a maximum of 4, 2 or 0 positive roots are
possible. If we reverse the sign, and use −[G] in Eq. (S3), then the maximum number of
negative roots is obtained. In this case we have a maximum of one negative root. Hence, if

1Equation, table and figure numbers refer to the main text, whereas enumerations with prefix ”S” can be
found in this Supplementary Text.

2Anderson, B., Jackson, J. & Sitharam, M. ’Descartes’ rule of signs revisited. Amer. Math. Monthly
105, 447-451 (1998).
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we had 3 positive roots, one negative root, that would leave us with one root to account for,
which would not come into either class. This therefore excludes the possibility of obtaining
exactly 3 positive roots. An examination of the remainder of the cases, also shows that
there is not a single exception, where the number of positive roots is exactly 3. The system
therefore cannot exhibit bistability.

Nullcline analysis. In Fig. S1 we show the steady state values of PU.1 vs GATA-1 as
described by Eqs. (3) and (4). In Fig. S1, upper panel, we show how the nullclines, d[P]/dt=0
(blue line) and d[G]/dt=0 (black line) as described by Eq. (1) intersect at a single point. In
this case only a single stable solution is possible. This is the primed state, which represents
small levels of both PU.1 and GATA-1 to be expressed. Taking into account the X gene
interaction, the nullcline d[P]/dt=0 is modified, as described in Eq. (4). As shown in
Fig. S1, lower two panels, it intersects the nullcline d[G]/dt=0 at three points. Two of these
can be verified to be stable (s) and one as unstable (u) – the system therefore is bistable.
The increased cooperativity through interaction with the X gene, results in pulling down the
d[P]/dt=0 nullcline (blue line to the red dotted line). These graphs were obtained for fixed
values of A, B and C.

An irreversible bistable PU.1–GATA-1 switch

In Fig. S2 we show the steady state values of PU.1, GATA-1 and X, as a function of the
environmental factor A for parameter values described in Table 1 (A, B), with external signal
B = 0.5 and ǫ4 = 0.25. As can be seen the system is irreversible, i.e, when A crosses a certain
threshold, GATA-1, X switches on, and remain locked at high levels thereafter. This occurs
when the binding strength of the GATA-1-X repressive heterodimer to the PU.1 regulatory
region is increased. This is because, even on removal of the A signal, low amounts of this
heterodimer are sufficient to suppress PU.1 due to the increased binding strength, and in
addition GATA-1 is autoregulatory, which ensures that GATA-1 retain high levels, and hence
PU.1 can never be turned on. However, in Fig. S3, we display similar curves with respect
to environmental signal B for parameter values described in Table 1 (A, B) and with external
signal A=0.6 and ǫ4=0.25, which shows that irreversibility is not obtained. Increasing the
repression on PU.1 through increased binding of the repressive heterodimer makes it harder
for the switch to be irreversible with respect to B. This is why we have mainly focused on
the dynamical features of the network with respect to environmental signal B throughout
the paper, since it is much easier to obtain irreversibility with respect to A.

Is it necessary for C/EBPα to be autoregulating for irreversibility

of the network?

Autoregulation of C/EBPα has a very important role to play for the irreversibility of the
switch. In Fig. S4 (for parameter values see Table 1 (C), and for signal A = 0.75, ρ2=0,
̺2=0, Eq. 5), the irreversibility is lost due to the loss of autoregulation of C/EBPα. The
irreversibility occurred due to the ability of C/EBPα to autoregulate itself and provide the
positive feedback to PU.1, thereby keeping it a high level, even when the signal B is removed.
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However, on loss of the autoregulation, C/EBPα, falls to a low level, once B decreases (since
GATA-1 and FOG-1 increase, and this leads to suppression of C/EBPα), and the feedback
to PU.1 is insufficient to keep it at a high level.

Consequences of autoregulation of FOG-1 for the PU.1/GATA-1
switch

We now consider autoregulation of FOG-1 as a possibility and ask what effect does this have
on the network dynamics. To describe this effect we have to modify the equation for d[F ]/dt,
to be,

d[F ]

dt
=

θ1A1 + θ2[G] + θ3[F ]

1 + ϑ1A1 + ϑ2[G] + ϑ3[E] + ϑ4[F ]
− γ4[F ], (S4)

In Fig. S5 (all parameters are as in Table 1(C), and the external signal A = 1, θ3 =
0.025, ϑ4 = 0.025), we see that the irreversibility of the switch is once again lost due to
the ability of FOG-1 to keep itself at a high level, and thereby keep C/EBPα at a low
level. Since the latter provides positive feedback to PU.1, the result is that the system
becomes reversible. Hence, the network architecture suggests that for the PU.1–GATA-1
network to be irreversible, C/EBPα must be autoregulating, whereas as FOG-1 should not
be autoregulating.

Can FOG-1 play the role of the X gene?

Since FOG-1 has been found to bind together with GATA-1, at several target genes, we
explore the possibility of FOG-1 playing the role of the X gene. To describe this mathemat-
ically, Eq. 5 in the main text can be replaced by,

d[G]

dt
=

α1A + α2[G]

1 + β1A + β2[G] + β3[G][P ]
− γ1[G],

d[P ]

dt
=

δ1B + δ2[P ] + δ3[E]

1 + ǫ1B + ǫ2[P ] + ǫ3[G][P ] + ǫ4[G][F ] + ǫ5[E]
− γ2[P ],

d[F ]

dt
=

θ1A1 + θ2[G]

1 + ϑ1A1 + ϑ2[G] + ϑ3[E] + ϑ4C
− γ4[F ], (S5)

d[E]

dt
=

ρ1A2 + ρ2[E]

1 + ̺1A2 + ̺2[E] + ̺3[F ]
− γ5[E],

where the parameter values are given in table S1.

In Figs. S6 and S7, the curves show the irreversible switch-like behavior, of the network with
respect to signals A and B. This behavior is not very different from the network with the X
gene, since the basic architecture remains the same. However, the major difference appears
when the issue of priming the system arises. As we have seen, suppression of X leads to the
loss of cooperativity by which GATA-1 can effectively suppress PU.1, and this leads to a
primed state. Suppression of FOG-1 however, leads to a completely different response. In
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Fig. S8, the concentrations are shown as functions of the signal C, which suppresses FOG-1.
As we see, at some threshold of C, only one possible state is obtained: PU.1, C/EBPα are
high and GATA-1, FOG-1 are low. This result is to be expected, since, suppression of FOG-
1, allows C/EBPα to rise, which in turn activates PU.1. Hence although FOG-1 provides
functionality of the X gene, priming the system becomes an issue.

Circuit properties of the GATA-1–PU.1 switch due to self-association
of GATA-1

In this section we model the PU.1-GATA-1 switch assuming self-association of GATA-1 [1].
We therefore assume (i) a GATA-1 dimer positively regulates GATA-1 (autoregulation), (ii)
a GATA-1 dimer binds to PU.1 to suppress both genes–PU.1 and GATA-1. Eq.(3) in the
main text can be replaced by,

d[G]

dt
=

α1A + α2[G]2

1 + β1A + β2[G]2 + β3[[G]2[P ]
− γ1[G],

d[P ]

dt
=

δ1B + δ2[P ]

1 + ǫ1B + ǫ2[P ] + ǫ3[G]2[P ]
− γ2[P ],

(S6)

where the parameter values are given in table S1.

In Fig. S9, the steady state values of GATA-1 and PU.1 show switch-like behavior with
respect to the external signal A (with B = 0), which clearly shows that self-association
of GATA-1 is sufficient to provide the required cooperativity for bistability. However, for
low values of the external signal A, the switch cannot be ”primed”, as seen in the low
values of GATA-1 and relatively large values of PU.1. In fact if the binding strengths of
the GATA-1 dimer to either the GATA-1 increase (strong self-activation) or PU.1 operator
is increased (strong repression)(corresponding to α2, ǫ3 respectively), the switch becomes
increasingly irreversible. The self-association provides strong nonlinearity, however making
it increasingly difficult to find a primed state, in which neither GATA-1, nor PU.1 are at
high levels.

[1] Shimizu R, Trainor CD, Nishikawa K, Kobayashi M, Ohneda K (2007) Gata-1 self-
association controls erythroid development in vivo. J Biol Chem 282: 15862-15871.
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TABLES

A
α1 α2 β1 β2 β3 δ1 δ2 δ3 ǫ1 ǫ2 ǫ3 ǫ4 ǫ5

1 0.25 1.0 0.25 1 1 0.25 1 1.0 0.25 1 0.75 1.0

θ1 θ2 ϑ1 ϑ2 ϑ3 ϑ4 ρ1 ρ2 ̺1 ̺2 ̺3

1 0.1 1.0 0.1 1 10 1 0.1 1.0 0.1 1

B
α1 α2 β1 β2 β3 δ1 δ2 ǫ1 ǫ2 ǫ3

1 0.045 1 0.045 0.1 1 0.1 1 0.1 0.0075

Table S1: A Parameters used for Fig. S6 (B=1), Fig. S7 (A=1) and Fig. S8 (A=1, B=1).
A1 =0.01, A2 =0.015 and the degradation parameters γi=0.01 (i=1:5). B Parameters used
for Fig. S9 (B=0), γi=0.01 (i=1,2).
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