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1 Sequence coverage of fragment simulations

The 8-mer, 12-mer, and 16-mer fragment simulations cover 100%, 88.7%, and 76.7% of the
entire sequence space of the 13 proteins considered, respectively. Sequence spans for 8-mers,
12-mers and 16-mers are shown in Figures 1, 2 and 3.
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Fig. 1. 8-mer fragment simulations cover 100% of the sequence of the 13 proteins studied.
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Fig. 2. 12-mer fragment simulations cover 88.7% of the sequence of the 13 proteins studied.
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Fig. 3. 16-mer fragment simulations cover 76.7% of the sequence of the 12 proteins studied (src
SH3 was not included in the 16-mer simulations). Fragments with the same sequence span represent
simulations with competing sets of harmonic contact restraints.
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2 Classification success for the best logistic regression models

Table 1 shows the success of classifying native and non-native contacts given by our best-
parameterized logistic regression models. The best classification successes of models with
fewer included terms are also shown, for comparison.

Table 1
Classification success for the best logistic regression models.

length dist. included terms model quality x∗ native non-native

method (Q) classification success classification success

8 Cα CPROB .2095 ± .0025 -1.1688 0.7055 (436/618) 0.6015 (1437/2389)

+MSTAB .2225 ± .0021 -1.1688 0.7055 (433/618) 0.6023 (1439/2389)

12 Cβ CPROB .2220 ± .0010 -1.346 0.6012 (466/775) 0.7270 (2791/3839)

+MSTAB .2318 ± .0025 -1.2382 0.5522 (428/775) 0.7392 (2838/3839)

+MESO .2427 ± .0005 -1.2056 0.5135 (398/775) 0.7619 (2925/3839)

16 Cα CPROB .2526 ± .0005 -1.4704 0.6439 (539/837) 0.7072 (3096/4278)

+DPROF .2617 ± .0005 -1.520 0.6678 (559/837) 0.7034 (3010/4278)

+MSTAB .2690 ± .0007 -1.353 0.5926 (496/837) 0.7667 (3280/4278)

+MCOOP .2702 ± .0006 -1.307 0.5675 (475/837) 0.7840 (3354/4278)
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3 Testing the performance of the best logistic regression models against random
null distributions

Recall the model-selection procedure we used: To judge the quality of each model, we used an
accuracy-based measure, Q = 1−a−b, where a is the fraction of incorrectly-classified native
contacts, and b is the fraction of incorrectly-classified non-native contacts. The Q quantity
was used to forward-select models with increasing numbers of logistic regression parameters.

There is complicating issue when using accuracy-based measures to select models. In the case
where the data contains many more non-native contacts than native contacts (or vice versa),
a high classification accuracy may not reflect a significant improvement over a random null
distribution, per se. To test this possibility for our selected models, we built a null distribution
of contact metrics to test the random-case performance of our models.

Because there are correlations between contact metrics due to chain connectivity, consider-
able care was taken to construct null distributions for contact metrics that preserved these
correlations. We did this by constructing the null distribution on a fragment-by-fragment ba-
sis. For each fragment, the values of the contact metrics were retained, while the assignment
of native and non-native contacts was randomized according to a per-fragment bootstrap-
ping procedure. For each fragment, a random contact map was drawn (with replacement)
from the full data set. This reassignment procedure, across the entire set of fragments, was
repeated 1000 times to construct a distribution of random-case realizations.

We next performed several tests to compare the performance of our selected models on the
actual data versus the random null data, which we will describe below.

Figures 4, 5, 6, 7, 8 and 9, show the results of these tests for the classification models chosen
as the best (based on model quality). Figures 4 and 5 show the results for our best 8-mer
and 12-mer classification models, respectively. Figures 6, 7, 8 and 9 show the results for a
series of best 16-mer classification models, having one, two, three, and four regression terms,
respectively. The model with four regression terms was chosen as the the best according to
the model quality, Q.

Part (A) of each figure shows the classification success for native contacts given by the model,
for both random null data and the actual data. Part (B) of the figures shows the same, for
non-native contacts. The green line shows a distribution of classification successes, across
all 1000 realizations of null set data, whereas the blue line simply marks the classification
success achieved when the classification model is applied to the actual data. In general,
non-native contacts are predicted with more significance than native contacts, a trend which
increases with chain length and the number of metrics used to train the logistic regression
model. This trend is due (at least in part) to the fact that the ratio of non-native to native
contacts increases with chain length.

Part (C) of each figure shows a contour plot of the joint distribution of native and non-
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native classification successes, across all 1000 realizations of null set data. The star marks
the classification successes when the model is applied to actual data. The contour plot is
an interpolation made using the program Mathematica. In all cases, the p-values for joint
classification success is less than 0.001 (which is the limit of what we can say given 1000 null
realizations).

Part (D) of each figure shows the model quality, Q, for the selected models across a range
of classification thresholds. The blue line shows the model quality when applied to the
actual data. The green line shows the average model quality across the 1000 random null
realizations, as a function of classification threshold. The error bars above and below the
green line show the standard deviation across random null realizations, for each classification
threshold.

Part (E) of each figure is similar in form to Part (D), but instead shows the Matthews Corre-
lation Coefficient (MCC) as a function of classification threshold (1). The MCC is a quantity
used to characterize the quality of a binary classification from the full “confusion matrix”
containing the numbers of true positives (TP ), false positives (FP ), true negatives (TN)
and false negatives (FN). It is been shown to be a more balanced measure of classification
accuracy when the classes are of very different size. The MCC is defined as:

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)

The results shown in parts (D) and (E) show that our chosen regression models have classifi-
cation accuracies better than random. It is interesting to note that the models are somewhat
predictive even when applied to our random null data. This may be partly due to the mis-
match in the numbers of native and non-native contacts, but it may also be due to correlations
present in the data independent of sequence. For instance, native contacts in general have
small sequence separation, which may correlate with the propensity of a random polymer
chain to make local contacts more frequently.

Part (F) of each graph shows a graph of the true positive rate versus the false positive
rate as the classification threshold is varied. This is otherwise known as a receiver operating
characteristic (ROC) curve (1). In the case where a model has no power to discriminate
whatsoever between native and non-native contacts, the ROC curve is a straight diagonal,
shown for reference as a red line. The more discriminative power a model has, the more the
ROC curve should be off the diagonal, which is what we see in this graph. For all models,
the ROC curve for the best classification models applied to the actual data (blue) is farther
from the diagonal than the ROC curve for the random null data (green). The null data ROC
curve shown is the average across all 1000 null distribution realizations.

Part (G) of each graph shows, for reference, the number of true positives (TP ), false positives
(FP ), true negatives (TN) and false negatives (FN) for each classification model, applied
to the true set of actual contact metrics. (Note that the total number of contact metrics
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contained in the set may be larger than the number of contacts in the full set of proteins,
because the set includes contact metrics from all the fragment simulations, many of which
contain overlapping protein sequences).
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Fig. 4. The performance of the best 8-mer classification model on actual data versus random null
data (see description above for details).
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best 12-mer classification model
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Fig. 5. The performance of the best 12-mer classification model on actual data versus random null
data (see description above for details).
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16-mer classification model (1 term)
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Fig. 6. The performance of the best one-term 16-mer classification model on actual data versus
random null data (see description above for details).
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16-mer classification model (2 term)
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Fig. 7. The performance of the best two-term 16-mer classification model on actual data versus
random null data (see description above for details).
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16-mer classification model (3 term)
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Fig. 8. The performance of the best three-term 16-mer classification model on actual data versus
random null data (see description above for details).
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best 16-mer classification model (4 terms)
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Fig. 9. The performance of the best (four-term) 16-mer classification model on actual data versus
random null data (see description above for details).

13



4 Regression models trained on local and non-local contacts only

Can we achieve better logistic regression models to classify contacts as native or non-native,
if we train separately on the data for local contacts (|i − j| ≤ 4) and non-local contacts
(|i − j| ≥ 5)? The training data was divided into two groups, one with contacts having a
sequence separation of 3 or 4 residues, and another with sequence separations of 5 residues
or more. The best logistic regressions for the local and nonlocal data are shown in Tables 2
and 3, respectively, and the model relevances (R) for each metric are shown in Figures 10,
respectively.

Overall, the classification success for the local-only or nonlocal-only data was comparable,
but never as high as the classification success using the combined data. Contact probabilities
remain the most important metric in the local-only and nonlocal-only regressions, although
for local contacts, the model relevance (R) values for the CPROB metric was smaller in
the 8-mer and 12-mer regression models. This is probably because local contacts are easily
sampled by the chain regardless of sequence, which adds noise to the classification problem.

Table 2
Classification success for the best logistic regression models trained only on local contacts (sequence
separations of 3 or 4 residues only).

length dist. included terms model quality x∗ native non-native

method (Q) classification success classification success

8 Cα CPROB .2062 ± .0053 -0.23 0.6974 (431/618) 0.5939 (1419/2389)

12 Cβ CPROB .2225 ± .0021 -0.45 0.5793 (449/775) 0.7345 (2820/3839)

+DPROF .2276 ± .0028 -0.45 0.5187 (402/775) 0.7626 (2928/4278)

16 Cβ CPROB .2480 ± .0009 -0.33 0.6431 (483/751) 0.7245 (3162/4364)

+MESO .2660 ± .0015 -0.249 0.6133 (449/732) 0.7638 (3348/4383)

+MSTAB .2684 ± .0013 -0.253 0.6202 (454/732) 0.7554 (3311/4383)
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Table 3
Classification success for the best logistic regression models trained only on nonlocal contacts
(sequence separations of 5 residues or greater).

length dist. included terms model quality x∗ native non-native

method (Q) classification success classification success

8 Cα CPROB .2074 ± .0036 -2.20 0.688 (432/618) 0.609 (1455/2389)

+MSTAB .2092 ± .0044 -2.10 0.686 (424/618) 0.6299 (1505/2389)

12 Cβ CPROB .2204 ± .0010 -2.31 0.593 (460/775) 0.731 (2806/3839)

+MSTAB .2302 ± .0021 -2.26 0.579 (449/775) 0.713 (2738/3839)

16 Cα CPROB .2493 ± .0022 -2.70 0.647 (542/837) 0.723 (3095/4278)

+DPROF .2565 ± .0021 -2.67 0.629 (527/837) 0.742 (3177/4278)
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5 Benchmark simulations of 16-mer fragments

One of the challenges in the ZAM protocol (2) is sampling a diverse population of confor-
mations using short fragment simulations. To explore different possible topologies, harmonic
contact restraints are added to 16-mer simulations to bias the sampling. At this stage, it is
particularly critical to sample beta-hairpin structures, which generally take longer to form
in short simulations because of their nonlocal topology.

Here, as a test of our sampling methodology, we simulate a set of peptide fragments shown to
sample beta-hairpins during the course of the ZAM algorithm for up to 100 ns. Additionally,
we simulate 16-mer fragments of a protein outside our training set (PDB code: 1whz), with
several different combinations of contact restraints.

There are two issues we try to address with these simulations. The first is to test whether
convergence can be achieved with longer simulation times, and if so, whether this can better
discriminate between native and non-native hairpin decoys. We find that longer simulation
times do not necessarily result in better convergence to native structures, validating our use
short fragment simulations. This also suggests that the accuracy of our simulation results is
limited more by our forcefield potential than by sampling.

The second issue we address is to test whether the harmonic restraints added at the 16-mer
stage can yield better sampling of hairpins, and if this is the case, whether hairpin restraints
overly bias the sampling. By comparing across simulations with different sets of restraints,
we find that harmonic restraints can help to sample a diversity of conformations in short
REMD simulations, and that our prediction results are robust to perturbations from the
restraint potentials.

Methods

Molecular dynamics simulation.

The AMBER ff96 force field (3) with the solvation model of Onufriev, Bashford, and Case
(4) was used to perform replica exchange molecular dynamics (REMD) simulations (5). Each
simulation was 100 ns in length, with ranging from temperatures 270-700K. Clustering was
done to both reduce the amount of data to process, and to generate good representatives
of conformational basins predicted by the forcefield. A set of 10 or less representative con-
formations, clustered to ∼2Å RMSD by a modified K-means algorithm, is extracted from
the (lowest-temperature) data and used for the starting configurations of future rounds of
simulation.

The ZAM (Zipping and Assembly Method) protocol for simulating fragments is as previous
described in (2; 6). In the early “growth” stage of ZAM, we rely on short molecular dynamics
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sampling of 8-mer peptide fragments which are then grown to 12-mers for further simulation.
At the 16-mer stage, several alternative topologies for the cluster conformations extracted
from the 12-mer simulations are explored by adding harmonic contact restraints (with a force

constant of 0.5 kcal/mol/Å
2
) to the residue sidechain centroids.

ZAM simulations of 16-mer hairpins.

20 simulations of beta-hairpin systems were performed for 8 peptide fragments taken from
7 proteins, representing 40,000 ns of total simulation, or about 11 CPU-years (assuming
10 ns/day per processor). A summary of the fragments whose native states are hairpins is
described in Table 4. A summary of the “decoy” fragments, whose native states are not
hairpins, is described in Table 5. The native structures of the 8 fragments simulated here are
shown in Figure 11. The decoys are either amphipathic helices or helix-turn-helix motifs.

Table 4
16-mer ZAM simulations of fragments which are hairpins in the native state.

simulation protein residues sequence restraints

1 protein G 41-56 GEWTYDDATKTFTVTE none

2 (Y45,F52)

3 T0363 15-30 IEIAYAFPERYYLKSF none

4 (A18,Y25)

5 (A20,Y25)

6 T0340 21-36 LHSDKSRPGQYIRSVD none

7 (P28,I32)

8 (S26,I32)

9 (S26,Y31)

Table 5
16-mer ZAM simulations of “decoy” fragments which are not hairpins in the native state.

simulation protein residues sequence restraints

10 T0283 30-45 EYHHAYKAIQKYMWTS none

11 (I38,Y41)

12 (Y35,Y41)

13 T0311 30-45 MEIAPSTASRLLTGK none

14 (T37,R40)

15 1e68 6-21 GIPAAVAGTVLNVVEA none

16 (A12,V15)

17 (V11,L16)

18 30-45 SILTAVGSGGLSLLAAA none

19 (G36,G39)

20 (V35,L40)
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protein G T0363 T0340(a)

T0283 T0311 bocasp (1e68)(b)

6-21 30-45

Fig. 11. (a) Protein fragments that are beta-hairpins in their native conformations: residues 41-56
of protein G (1gb1), residues 15-30 of T0363 (CASP7 target) , and residues 21-36 of T0340 (CASP7
target). (b) Protein fragments that have previously been shown to sample hairpin “decoy” structures
in short (5 ns) REMD simulations: residues 30-45 of T0283 (CASP7 target), residues 30-45 of T0311
(CASP7 target) , and residues 6-21 and 30-45 of protein 1e68. The ribbon colors denote hydrophobic
residues (Ala, Met, Phe, Leu, Cys, Ile, Val, Trp, Tyr) in green, acidic resides (Glu, Asp) in red,
and basic residues (Lys, Arg) in blue.

Results

Here we briefly summarize the main findings observed in our hairpins simulations. We note
that most of these features are also observed in our test set of peptide fragment simulations.

Figures 19 through 38 show the snapshots of conformations sampled over time for each frag-
ment simulation. The coloring convention is the same as in Figure 11. Each graph shows the
conformation clusters and their populations in increments of 10 ns, for the lowest tempera-
ture of the simulations. The last nanosecond of each 10 ns-increment was used to generate
the conformation clusters. shown in the plot. Note that in many cases, these structures ap-
pear to fluctuate quite a bit. This is due to a combination of the intrinsic conformational
fluctuations seen in any one replica, and the temperature-swapping done in replica exchange
molecular dynamics (REMD).
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1. Native hairpin structures are better sampled when the fragment is centered around the
beta-turn.

This may be because hairpins out of the larger tertiary context will not tolerate unpaired
ends, and instead prefer to make either ionic (salt-bridge) interactions, or hydrogen-bonded
states like helices. This effect may be further magnified by the implicit solvent model used,
which favors compact states. The T0340 simulations, having the native turn slightly off-
center in the sequence, are a good example of this. The conformations sampled in the first
10 ns of restrained and unrestrained simulations are loosely defined by side chain interactions,
although some beta-hairpins are sampled with high probability in simulations with (S26,I32)
restrained.

2. An (i, i + 5) restraint works well to bias the sampling toward beta-hairpins.

Shown in Figure 12 are contact maps showing contact probabilities across all 16-mer simu-
lations, grouped by the sequence separation of restrained residues. It is interesting to note
that similar conditional probabilities of observing hairpins is observed in the statistics of
native protein structures. From a set of 3465 protein structures taken randomly the SCOP
database (7) (1 structure, or 2 if existing, from each unique SCOP class), we computed the
conditional probabilities of contacts in protein structures, given that an (i, i + 5) contact
was already present. The results show a high conditional probability of hairpin-like confor-
mations, regardless of sequence. This is consistent with previous work in polymer models
showing how this effect can arise from intrachain excluded volume (8).

Restraints help in sampling beta-hairpins at early times.

Simulations of the C-terminal fragment of protein G, whose native structure is ∼40% hairpin
in solution (9), are about 8% hairpin after 10 ns in unrestrained simulations (Figure 19),
and mostly hairpins when restrained by (Y45,F52) (Figure 20). Simulations of the T0283
(decoy) fragment also show restraints encourage hairpin formation after 10 ns (Figures 28,
30 and 29). T0311 fragment simulations (Figures 31 and 32) and 1e68 fragment simulations
(Figures 33, 34, 35, 36, 37, 38) sample hairpins regardless of restraints, while other fragment
simulations are more ambiguous (Figures 21, 22, 23).

Do longer simulation times help fragments converge to native-like structures?.

In general, no. There are several reasons why this may be the case: (1) simulations longer
than the 100 ns performed here would be needed, (2) the physical model we used is not
perfect, or (3) tertiary context is needed to drive them into their native states. While our
simulations do not address the tertiary context, we do observe anecdotal evidence of both
(1) and (2). Of course, without complete convergence, it is difficult to assess the quality of
our forcefield, other than by the results of our predictions (described in the main text).

20



(i,i+5) restraint

7 cases

(a)

(b)

92 cases

no restraints (i,i+3) restraint

35 cases

!"#$%&'&

( " ) * + ,( ," ,) ,*
(

"

)

*

+

,(

,"

,)

,*

-,.(

-(.+

-(.*

-(.)

-(."

(.(
/01#23#24#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

2(

-,.(

-(.+

-(.*

-(.)

-(."

(.(

/01#)3#"4#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(
/01#43#5#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(

/01#*3#"#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(
/01#53#)#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(

(i,i+4) restraint

25 cases

(i,i+7) restraint

4 cases

(i,i+6) restraint

2 cases

!"#$%&'&

( " ) * + ,( ," ,) ,*
(

"

)

*

+

,(

,"

,)

,*

-,.(

-(.+

-(.*

-(.)

-(."

(.(
/01#23#24#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

2(

-,.(

-(.+

-(.*

-(.)

-(."

(.(

/01#)3#"4#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(
/01#43#5#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(

/01#*3#"#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(
/01#53#)#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(

!"#$%&'&

( " ) * + ,( ," ,) ,*
(

"

)

*

+

,(

,"

,)

,*

-,.(

-(.+

-(.*

-(.)

-(."

(.(
/01#23#24#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

2(

-,.(

-(.+

-(.*

-(.)

-(."

(.(

/01#)3#"4#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(
/01#43#5#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(

/01#*3#"#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(
/01#53#)#$%&'&

( 4 ,( ,4 "( "4 2(
(

4

,(

,4

"(

"4

-,.(

-(.+

-(.*

-(.)

-(."

(.(

j

i

!9.5

!9

!8.5

!8

!7.5

!7

!6.5

!6

!5.5

!5

!4.5

p(C2, (i, i + 5))

log scale

p(c|(i, i + 5))

Fig. 12. (a) Conditional probabilities of Cα(< 7Å) contacts, given an (i, i + 5) contact is already
present, compiled from 3465 protein structures randomly chosen from the SCOP database (1 struc-
ture, or 2 if existing, from each unique SCOP class). (b) Average contact probabilities for ZAM
fragment simulations with contact restraints of contact order 3,4,5,6 and 7, aligned on contact map
according to their contact restraints, shown by a circle on each contact map. These results were
compiled from the database of fragment simulations described in the main text.
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For many of our hairpin simulations, there exists quite a bit of variability in the lowest-
temperature conformations, and/or population shifts on time scales comparable to the length
of the simulation. The simulation results also have features consistent with well-known in-
accuracies of Generalized Born models (10; 11? ), including possible over-stabilization of
helices for hairpin fragments with known native states (Figure 19), and some problems with
overly stable salt-bridge formation.

Overall, the variability of conformations sampled in these simulations at early times, along
with the directed sampling achieved with contact restraints (Figures 20, 22, 23), is further
validation that 10 ns of REMD simulation is sufficient for obtaining good sampling.

16-mer fragment simulations are robust to restraint perturbations.

To test whether contact prediction scores are robust with respect to restraints, we compared
the results of our usual ZAM protocol of using restrained REMD simulation against 1)
the results of simulations that had no restraints, and 2) the results of simulations with
competing sets of restraints which were allowed to exchange between replicas. We find that
these different protocols have little effect on the outcome of the simulations, as shown by the
similarity in prediction scores (Figure 13).

6 Contact Prediction success for 8-mer and 12-mer fragment simulations

Figures 15, 16 and 16 show on a contact map, for each protein target, the ‘logit’ values of
log(P (n|{sm})/P (n̄|{sm})) given by the best 8-mer, 12-mer and 16-mer logistic regression
models for all proteins in our test set. This quantity has the flavor of an informational
equivalent of a free energy difference of native minus denatured. The darker black on the
figure indicates the strongest prediction of native-like structure.

7 Conformation scores for 8-mer and 12-mer fragment simualtions

We compute a conformation score, C, for a given molecular conformation as follows:

C =
∑
i

∑
j

log
P (n|{sm}ji)
P (n̄|{sm}ji)

Here, i runs over all contacts in the conformation, and j runs over all fragment simulations
which contain contact i.
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Fig. 13. Contact prediction scores
∑
j log(P (n|{sm}j)/P (n̄|{sm}j) for 16mer fragment simulations

of 1whz. (A) Native contact map for the protein 1whz. (B) Results of simulations using the usual
ZAM protocol restrained REMD simulation. (C) Results of simulations that had no restraints. (D)
Results of simulations with competing sets of restraints which were allowed to exchange between
replicas.

We computed conformation scores for all the cluster conformations extracted from 8-mer, 12-
mer, and 16-mer 1whz fragment simulations. For 8-mers and 12-mers, we observe a correlation
(albeit noisy) between a high value of C and a near-native (low-RMSD) structure. Figure
14 shows the RMSD-to-native plotted versus prediction scores for all cluster conformations
extracted from 8-mer and 12-mer fragment simulations of 1whz. The plots are reasonably
funnel-shaped, that is, the higher the prediction score, the closer that conformation is to the
native state.

8 An examination of decoy structures for 1whz

Recall that for our test protein 1whz, non-native “decoy” conformations were found that
gave high native conformation scores. We compared these conformations to the sequence-
based predictions from I-sites, a library of local sequence-structure correlations (12). Local
I-sites predictions with the highest confidence scores often have corresponding fragment
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Fig. 14. RMSD-to-native plotted versus prediction scores for all cluster conformations extracted
from 8-mer and 12-mer fragment simulations of 1whz.

structures that are experimentally stable in solution. It has been shown that I-sites fragments
can be used as ‘initiation sites’ to generate a set of decoy structures that can then be
further optimized for protein structure prediction (13; 14). This idea has been used to build
an automated protein structure prediction server (14) which uses a hidden Markov model
based on I-sites, called HMMSTR, combined with optimization from the Robetta algorithm
(15; 16; 17).

When the 1whz sequence is submitted to the HMMSTR/Robetta structure prediction server
(14) (with an option set to avoid the use of multiple sequence alignments), the N-terminal
beta-strand that our fragment simulations predict as a helical decoy is also predicted to be
helical, with a high confidence score of 0.85 (Figure 18). When multiple sequence alignment
is used, this helical I-sites fragment receives much lower confidence scores. This observation
is further evidence that statistical occurrences of peptides in structural databases are related
to their physical free energies.
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Fig. 15. Contact prediction ‘logit’ scores of the best regression models trained on 8-mer simulations,
for all proteins in our test set. Shading is as described in Figure 5 of the main text.
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Fig. 16. Contact prediction ‘logit’ scores of the best regression models trained on 12-mer simulations,
for all proteins in our test set. Shading is as described in Figure 5 of the main text.
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Fig. 17. Contact prediction ‘logit’ scores of the best regression models trained on 126mer simula-
tions, for all proteins in our test set. Shading is as described in Figure 5 of the main text.
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Fig. 18. The I-sites library gives a high confidence value to a helical decoy structure
we found in our ZAM fragment simulations. Left: When multiple sequence alignments by
PSI-BLAST are not allowed, the top I-sites motifs and top 5 HMMSTR/Robetta server predictions
predict the same helical decoy structure (cyan) we find using molecular simulation. Right: When
multiple sequence alignment is used in the prediction, the decoy helix gets filtered out.
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Fig. 19. 100 ns simulation of the C-terminal fragment of protein G (no restraints).

Fig. 20. 100 ns simulation of the C-terminal fragment of protein G, with (Y45,F52)
restrained.
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Fig. 21. 100 ns simulation of the T0363 fragment (no restraints).

Fig. 22. 100 ns simulation of the T0363 fragment, with (A18,Y25) restrained
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Fig. 23. 100 ns simulation of the T0363 fragment, with (A20,Y25) restrained

Fig. 24. 100 ns simulation of the T0340 fragment (no restraints).
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Fig. 25. 100 ns simulation of the T0340 fragment, with (P28,I32) restrained.

Fig. 26. 100 ns simulation of the T0340 fragment, with (S26,I32) restrained.
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Fig. 27. 100 ns simulation of the T0340 fragment, with (S26,Y31) restrained.

Fig. 28. 100 ns simulation of the T0283 fragment (no restraints).
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Fig. 29. 100 ns simulation of the T0283 fragment, with (Y35,Y41) restrained.

Fig. 30. 100 ns simulation of the T0283 fragment, with (I38,Y41) restrained.
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Fig. 31. 100 ns simulation of the T0311 fragment (no restraints).

Fig. 32. 100 ns simulation of the T0311 fragment, with (T37,R40) restrained.
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Fig. 33. 100 ns simulation of the 1e68 protein fragment, residues 6-21 (no restraints).

Fig. 34. 100 ns simulation of the 1e68 protein fragment, residues 6-21, with (V11,L16)
restrained.

38



Fig. 35. 100 ns simulation of the 1e68 protein fragment, residues 6-21, with (A12,V15)
restrained.
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Fig. 36. 100 ns simulation of the 1e68 protein fragment, residues 30-45 (no restraints).

Fig. 37. 100 ns simulation of the 1e68 proteinfragment, residues 30-45, with (V35,L40)
restrained.
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Fig. 38. 100 ns simulation of the 1e68 protein fragment, residues 30-45, with (G36,G39)
restrained.
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