Supplementary methods

Center of rotation

It might seem intuitive to calculate the translation from $|\mathbf{t}|$, the displacement of c_{S}, the center of mass of S. However, except for translation parallel to \mathbf{u}, \mathbf{t} may arise from rotation about a physically meaningful axis that does not pass through c_{S}. We define an axis as physically meaningful if this axis passes near the interface between L and S, that is, the residues that define the $6 \AA$ contacts between L and S . We define an axis as passing near a set of residues if the C_{α} atom of any residue in the set is no more than $5.0 \AA$ from the axis. To assess this, we first find a center of rotation c_{R}, such that the motion can be described as a rotation by θ about \mathbf{u}, centered at c_{R}, and a translation T_{u} parallel to \mathbf{u}.

To do this, we first find the basis vectors $\mathbf{e}_{\mathbf{x}}, \mathbf{e}_{\mathbf{y}}$, and $\mathbf{e}_{\mathbf{z}}$ of a right-handed orthogonal coordinate system centered at c_{R} describing the counterclockwise motion from state A to state B . Let s_{1} and s_{2} be the centers of S_{A} and S_{B}^{\prime}, and let \mathbf{s} be the vector between the two centers. Let $\mathbf{e}_{\mathbf{z}}=\mathbf{u}$, and let $\mathbf{e}_{\mathbf{x}}$ lie in a plane defined by $\mathbf{e}_{\mathbf{z}}$ and the midpoint of \mathbf{s} such that s_{1} and s_{2} are in the $\left(\mathbf{e}_{\mathbf{x}},-\mathbf{e}_{\mathbf{y}}\right)$ and $\left(\mathbf{e}_{\mathbf{x}}\right.$, $\left.\mathbf{e}_{\mathbf{y}}\right)$ quadrants, respectively. Then, $\mathbf{e}_{\mathbf{x}}=\operatorname{unit}\left(\mathbf{s} \times \mathbf{e}_{z}\right)$, where $\operatorname{unit}(\mathbf{v})=\mathbf{v} /|\mathbf{v}|$, and $\mathbf{e}_{\mathbf{y}}=\mathbf{e}_{\mathrm{z}} \times \mathbf{x}$.

Then, we find the distance of s_{1} from the origin in the $\mathbf{e}_{\mathbf{y}}$ and $\mathbf{e}_{\mathbf{x}}$ directions. Since $\mathbf{e}_{\mathbf{x}}$ lies in a plane bisecting \mathbf{s}, s_{1} is $y=\frac{1}{2}\left(\mathbf{s} \bullet \mathbf{e}_{\mathbf{y}}\right)$ from the origin in the $-\mathbf{e}_{\mathbf{y}}$ direction. Next, we triangulate to find x, the distance of s_{1} from the origin in the $\mathbf{e}_{\mathbf{x}}$ direction:

$$
x=\frac{y}{\tan \left(\frac{1}{2} \theta\right)} .
$$

To find c_{R}, we simply extrapolate back:

$$
c_{\mathrm{R}}=s_{1}-x \mathbf{e}_{\mathrm{x}}+y \mathbf{e}_{\mathbf{y}} .
$$

