
S2 Equilibria and bifurcations in two dimensions

Close to a typical equilibrium point, there exist principal directions or planes in which the solution

either approaches or moves away from the equilibrium at an exponential rate. These directions

are called eigenvectors of the equilibrium, and the exponential rates are called eigenvalues. It

is possible that the solution either spirals toward or away from the equilibrium point in a two-

dimensional plane instead of a single direction. In this case the eigenvalue is a complex number

and the distance between the solution and the equilibrium changes at an exponential rate given

by the real part of the eigenvalue. For simplicity the following discussion is restricted to real-

valued eigenvalues though equilibria with complex eigenvalues have similar properties based on

the value of the real part of the eigenvalue [1]. An eigenvalue with a negative value implies that

the solution approaches the equilibrium along the eigenvector, while an eigenvalue with a positive

value implies that the solution moves away from the equilibrium along the eigenvector. Equilibria

can have different stability properties depending on their eigenvalues [1, 2].

In a system with two state variables three cases are possible, as illustrated in the top three panels

of Fig. S2. An attractor or node equilibrium [1] has two negative eigenvalues, and hence attracts

all solutions in a surrounding region. This region is called the basin of attraction of the equilibrium.

While the eigenvalues provide information about the solutions close to the attractor, the basin of

attraction determines the behavior of solutions farther away from the attractor. A repeller [1] has

two positive eigenvalues and all solutions in its neighborhood move away from it.

A saddle equilibrium has one negative and one positive eigenvalue. The eigenvectors are shown

as arrows. The eigenvector associated with the negative eigenvalue extends to a curve called the

stable manifold (S) [2], which is the only solution that approaches the equilibrium. All other

solutions eventually move away from the saddle point. The eigenvector associated with the positive

eigenvalue extends to a curve called the unstable manifold (U ) [2], which is the only solution that

would approach the equilibrium if the arrow of time were reversed. In a higher-dimensional system

such as the gap gene system saddles with more than one negative eigenvalue are possible, and

their unstable and stable manifolds are surfaces of dimension equal to the number of positive and

negative eigenvalues respectively. As is the case with the basin of an attractor, the manifolds of a

saddle point determine the behavior of solutions farther away from it.

If the system of equations depends on a parameter such as the A–P position in the gap gene

system, the equilibrium solutions change with the parameter. Of particular interest are changes

in the number of equilibria or their stability, called bifurcations. Bifurcations cause a qualitative

change in the dynamics of the system. They occur when the system has an equilibrium point with

one or more zero eigenvalues (a degenerate equilibrium [1]). The bottom three panels of Fig. S2

(from left to right) illustrate a saddle-node bifurcation in a two-dimensional phase space. At less
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than a critical value of the parameter, the system has a saddle and a node. At the critical value,

there is only one equilibrium, which is degenerate. At values of the parameter greater than the

critical value, there are no equilibria in the system.

References

[1] Hirsch M, Smale S, Devaney R (2004) Differential Equations, Dynamical Systems, and an

Introduction to Chaos. Boston: Academic Press.

[2] Perko L (1996) Differential Equations and Dynamical Systems. New York: Springer-Verlag.

2


