
S3 Equilibria, stability, one-dimensional manifolds, and basins

of attraction

This section describes the calculation of equilibria, their stability, associated one-dimensional man-

ifolds and basins of attraction.

For the pair of Bcd and Cad concentrations (vBcd(x) and v̂Cad(x)) that position the nucleus

at A–P position x, the equilibria v̂ = (v̂Hb, v̂Kr, v̂Gt, v̂Kni) were calculated by solving Eq. (S3)

(Protocol S1), using the Newton-Raphson method [1, 2]. The ability of the Newton-Raphson

algorithm to find zeroes depends on the starting point. To ensure that all equilibria were obtained,

the Newton-Raphson iteration was started from n4 points on a uniform grid in the four-dimensional

box (0, 250) × (0, 250) × (0, 250) × (0, 250). Newton-Raphson was run with a tolerance of 10−6,

and only a negligible number of starting points failed to converge. n was increased from 3 to 51.

For all nuclei, no new equilibria were found after n = 10.

The equilibria were classified according to the eigenvalues of the linearized system of equations
dy

dt
= J(v̂a)y, where y = va − v̂a is a 4-dimensional vector, and J(v̂a) is the Jacobian of the

autonomous part of Eq. (S1) (Protocol S1) at the equilibrium point v̂a. The eigenvalues are complex

numbers in general, and the real part determines the stability of the equilibrium. An equilibrium

which has no eigenvalue with zero real part is called a non-degenerate hyperbolic equilibrium. A

hyperbolic equilibrium which has all eigenvalues with negative real parts is called an attractor or a

node. A hyperbolic equilibrium which has at least one eigenvalue with a positive real part and at

least one with a negative real part is called a saddle equilibrium. Degenerate equilibria are defined

by J being singular, that is, they have at least one zero eigenvalue. A bifurcation is said to occur

when the number of equilibria changes.

A saddle equilibrium has p < 4 eigenvalues with positive real parts and q = 4 − p eigenvalues

with negative real parts. The j th such point is denoted by Sj
p,q. p is called the index of the saddle

equilibrium. Associated with such a point are two invariant sets, called the global stable manifold

and the global unstable manifold [3]. The global stable manifold is the set of all points such that

trajectories starting from them have the saddle equilibrium as their limit as t → ∞, and is of di-

mension 4−p. The global unstable manifold is the set of all starting points whose trajectories have

the saddle equilibrium as their limit as t → −∞, and is of dimension p. The stable and unstable

manifolds of saddles of index 1 (S
j
1,3) are of particular interest. The three-dimensional stable man-

ifold of such points forms the boundaries for basins of attraction of point attractors [4]. A stable

manifold of dimension 3 is very computationally expensive to calculate [5, 6]. By comparison, cal-

culating the one-dimensional unstable manifold of S
j
1,3 is straightforward [4]. Two starting points

were chosen, one displaced by 10−1 from S
j
1,3 in the direction of the eigenvector of the positive
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eigenvalue; the other displaced by the same amount in the opposite direction. The union of trajec-

tories resulting from these starting points, U
j
+, and U

j
−

is an approximation to the one-dimensional

unstable manifold of S
j
1,3.

Note that even though the unstable manifolds of S
j
1,3 were calculated for the autonomous part

of Eq. (S1) (Protocol S1), their definition is more general, and holds for nonautonomous systems

of equations as well. The same holds true for stable manifolds.

An equilibrium point that has all eigenvalues with negative real parts is called a node or a point

attractor [3, 7]. The jth such point is denoted by A
j
0,4. There exists a set of points such that any

trajectory starting within it approaches the node as t → ∞ [3]. This set is called the basin of

attraction of the node, and the node is an attractor of this set.

Since the Hb axis forms the biological set of initial conditions (no Kr, Gt, and Kni protein is

detected before cycle 13, see the Gap Gene Circuits section), we only characterized the intersection

of the Hb axis with the basin of attraction of the nodes. In this paper the term “basin of attraction” is

used with the special meaning that it is the intersection of the four-dimensional basin of attraction

with the Hb axis. The trajectories were calculated using the hybrid nonautonomous-autonomous

system (Eq. S1) (Protocol S1). They were started from uniformly spaced starting points on the Hb

axis and integrated until |va
i (t) − A

j
0,4| < 10−6. The set of starting points that came close to A

j
0,4

formed the preliminary characterization of its basin.

Next the open interval (Bj
1, B

j
2) on the Hb axis was explicitly calculated, within which all

starting points reached the point attractor A
j
0,4. B

j
1 and B

j
2 are starting points (on the Hb axis)

of singular trajectories that reach close to a saddle equilibrium point of index 1. The set of all

singular trajectories that reach a saddle equilibrium of index 1 defines the boundary between basins

of attraction [4] of the attractors of the system. Thus B
j
1 and B

j
2 are the intersection of the basin

boundaries with the Hb axis.
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