
Text S1 

The supplementary text summarizes the key statistical algorithms developed by the 

five other methods under comparison in the present study for predicting single feature 

polymorphisms from Affymetrix microarray data. 

Method 2: This was first proposed by Winzeler et al. (1998) to identify SFP from 

genomic DNA microarrays. Constancy in abundance of molecules interrogated for all 

genes is probably the most distinct feature of genomic DNA microarray data when 

compared to RNA microarray data.  However, the two methods share a common 

principle in screening SFP, i.e. identification of the probes whose signal intensities 

contrast with the uniformity between the two genotypes for the remaining probes in 

the same set.  The method would be appropriate to survey SFPs at least for those 

genes whose expression is not so different that the effect of the SFP associated probe 

will be hidden by variation in gene expression between the two genotypes.  Thus, an 

obvious risk of using this method to predict SFPs is that genes differentially 

expressed between two genotypes are likely to be predicted as SFP associated genes 

even though there is no genetic polymorphism in the coding sequence of the 

genotypes.  A detailed description of the method was summarized elsewhere (Brem 

et al. 2002) as follows 

 First, data from 3 hybridization experiments for each parent strain were filtered 

by removing probe pairs with saturated intensity (>40,000 units) on any chip, and 

probe pairs with a low perfect match (PM) intensity (<1,000 units) or a low difference 

between PM and mismatch (mm) intensities (<500 units) in any parent hybridization. 

All further analyses were performed on log(PM/MM) values. 

 To correct for global chip effect, each distribution was centered by subtracting its 

mode. We performed two scores for each probe pair: 

 Z=D/(A+S) and z=d/(a+s) 

Where 

 D is the average of 3 differences between two parental values (P1i-P2i, i=1,2,3), 

with P1i being the ith value of the yeast parental strain (YH1A) or the barley parental 



line (Morex).  

 S is their standard deviation, and 

 A is the 90th percentile of all S values 

 d is the average of the four differences P12-P11, P13-P12, P22-P21 and P23-P22.  

 s is their standard variation, and 

 a is the 90th percentile of all s values. 

We selected probe pairs with Z > 0.5. For all these selected probe pairs, we analyzed 

all hybridization experiments (parents and their offspring, 46 arrays for yeast data and 

145 for barley data). We excluded probe pairs having missing values in more than 10 

experiments, normalized log(PM/MM) values by dividing by the mode of their 

distribution, and for each probe pair, k-means clustering with k=2 was performed. 

Probes were retained if the clustering separated the parental values (i.e. all three P1 

values were clustered in one group and all three P2 in the other). In the probes so 

selected, we calculated the probability of a given offspring individual having P1 

genotype as P1(x) / [P1(x) + P2(x)] in which P1(x) and P2(x) are the normal probability 

densities with the mean and variance calculated from P1 and P2 values respectively. If 

the probability >0.965 then the individual is inferred to have P1 genotype or else if the 

probability <0.035 then the individual is inferred to have P2 genotype or otherwise the 

individual’s genotype is uncertain. 

 

Method 3: Ronald et al (2005) developed an approach for predicting SFP and 

genotypes at the SFP in a yeast segregating population based on the proposition that 

the binding affinity of a transcript sequence to its complementary probe sequence can 

be adequately predicted from the positional-dependent-nearest-neighbour (PDNN) 

model (Zhang et al. 2003) as 
 

 * *ˆ / 1 exp( ) / 1 exp( )ij i ij ijI N E N E B⎡ ⎤⎡ ⎤= + + + +⎣ ⎦ ⎣ ⎦              (9) 

 
For those species such as yeast considered by Ronald et al (2005), perfect-match 

probe sequences are known to exactly match their corresponding transcript sequences 



in one of the parental strains from which the segregating population was created.  In 

the standard strain, îjI  may be recognized as the expected value of perfect-match 

hybridization intensity of the jth probe for the ith gene.  Under the PDNN model, Ni is 

defined as the expression index for the gene i and has a form of  
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where [1 ( )]ij ij ijI exp Eλ = +  and ijI is the observed perfect-match value. ijE and 

*
ijE are energy parameters depicting respectively specific and non-specific RNA-DNA 

binding and depend on nucleotide sequence of the target probe.  Each of the energy 

parameters involves 40 unknown parameters (see Zhang et al. (2003) for details).  

Together with *N , the non-specific binding parameter, and B, the constant 

background parameter, equations (9)-(10) involve a total of 82 unknown parameters 

to be estimated from n × 11 perfect-match intensity values and probe sequences for 

each of the arrays in question by minimizing the so-called fitness function 
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where n is the number of genes interrogated. Ronald et al (2005) compared ˆ/ij ijI I  of 

a yeast strain against that of the reference yeast strain.  Significance of the 

comparison was taken as evidence to support inference of SFP associated with the 

probe.  
 

Method 4: Cui et al. (2005) proposed an approach for predicting SFP and genotypes 

at the SFP in a barley segregating population based on estimate of probe affinity 

effect from a simple additive linear model of log-scaled perfect match signals. Let Stij 

be the log-scaled PM value of the jth probe in the ith probe set hybridized to a RNA 

sample with genotype t (Here t = 1, 2 for the two parental genotypes). It was modeled 



as 

tij ti tij tijS I A ε= + +                                            (12) 

where I represents the expression index at probe set level; A measures the probe 

affinity effect and ε is the residual term. 

They denoted the difference of affinity effect between two genotypes by Y, a N × 

p matrix with elements 

1 2sample median of sample median ofij ijijY A A= −                  (13) 

where i=1, 2, . . . , N and j=1, 2, . . . , p. More specifically, N row vectors of Y 

represent N distinct probe sets and p column vectors represent p probes which are 

tiled across a gene. Here, N row vectors are denoted by y1, y2, . . . , yN for future use. 

The sample median was calculated on the biological replicates from each genotype. 

Since it was expected that the majority of nucleotide positions within genes in the 

barley genome did not have polymorphism, parallel pattern of signal intensity 

between two genotypes should be observed in most probe sets. From a geometric 

point of view, if differentiation in signal intensity between two genotypes was 

represented by a p-dimensional point for each probe set, they would form a cloud in 

p-dimensional space with the majority of points clustered together and any point at 

the edge suggests a “potential” probe set that might contain SFP probe(s). Cui et al. 

(2006) used projection pursuit (Rousseeuw and Leroy 1987) to calculate overall 

outlying scores and individual outlying scores (defined below) to separate “potential” 

probe sets from the whole collection of probe sets under consideration and to quantify 

the contribution of individual probes to the overall outlyingness of their affiliated 

probe sets. Their algorithm can be summarized as follows: 

(1) Fix a direction v (a p × 1 vector). Project Y onto v. 

(2) Use relative absolute deviation to measure the outlyingness for every probe 

set on v. 

(3) Repeat steps (1) and (2) for all directions and take the supremum as the final 

overall outlying score for the probe set. 

Let ui be the overall outlying score for probe set yi, i=1, 2, …, N. It is then 



defined as 
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where '
jy v  is the usual inner product, i.e. a’b = a1b1 + a2b2 + … + apbp; med stands 

for the median (Rousseeuw and Leroy 1987). In practice, one cannot try all directions 

in the p-dimensional space since there are infinitely many. Cui et al. (2005) suggested 

using only those row vectors having high variation. 

Next, a summary *
ijw  were proposed to evaluate the individual contribution (i.e. 

individual outlying scores) by each probe in a probe set: 

* ( , ) ( with replaced by { }, )ij i i i ij j ij iw u Y u Y Y med Y∗ ∗= −v v                (15) 

with *
iv  being the particular direction at which ui is actually obtained. 

At last, the probe sets with the highest overall outlying scores will be identified 

as containing putative SFP probe(s). Then an SFP will be located at the probe with the 

highest individual outlying score. When multiple SFPs are involved, one can define 

the selection rule with certain stringency according to the real situation. 

 

Method 5: West et al. (2006) suggested to identify SFP by calculating a summary 

measure, | | /i i i iSFPdev x x x∉= − , where xi is the perfect match value of the ith probe in 

a given probe set and ix∉ is the mean perfect match values of all remaining probes 

excluding the ith probe. West et al’s algorithm was implemented by first searching for 

a bimodal distribution in the SFPdev values for all PM probes on the microarray from 

all the individuals. In brief, the SFPdev values were sorted into an ascending order 

* * 1,{ }j j nSFPdev =  with n being the number of individuals. A gap was determined at the 

j*-th position when * 1 *( / ) 2.0j jSFPdev SFPdev+ > . Then an SFP was declared if the 

parental SFPdev values from the replicated GeneChips fell in separate ranges of the 

distributions. The * 1jSFPdev + and *jSFPdev  values for each putative SFP marker were 



then used to define boundaries for assigning genotype score. 
 
Method 6: Rostoks et al. (2005) presented a model-based approach for detecting 

SFPs. The model fits the logarithm of the background corrected and normalized 

perfect match signal, ( )ijklY , for the lth replicate of the kth probe from the jth tissue of 

genotype i with a linear model 
 

    log( ) ( )ijkl i j ij k ijklY u g t g t p ε= + + + × + +             (16) 

 
The residuals from this model were fitted for a genotype effect at the probe level to 

reveal SFPs using the Bioconductor package siggenes according to significance 

analysis of microarrays (SAM) (Tusher et al. 2001; Schwender et al 2003). A 

permutation test was carried out to calculate the false discovery rate of the significant 

genotype associated probe effect. Given a prior probability, say 0.95 as suggested, 

that a probe was not a SFP, a test statistic (delta) was calculated as distance between 

observed and expected likelihood of a probe being called an SFP and used to infer 

whether the probe under test was an SFP. Stringency of the statistical inference 

depends on the value of delta.  
 
To implement the above approach to analyze the datasets in the present study, we used 

a simple model given as 
 

log( )ijk i j ijkY u g p ε= + + +            (17) 

 
for the background corrected and normalized perfect match signal of the kth replicate 

of the jth probe from genotype i because there was no tissue effect that needed to be 

modeled in the present datasets. 
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