
Supplementary Information

Results, Simulated Data

In analyzing actual biological data, there is no easy

way to verify the predicted recombination break-

points, so to investigate the accuracy, reliability, and

limits of our method, we applied our algorithms to

data simulated by Recodon, [1]. We produced sev-

eral synthetic datasets of varying lengths, number of

taxa, number of recombination events, and structure

of marginal trees. The general simulation param-

eters used were the following: recombination rate:

2 × 10−8 , mutation rate: 3 × 10−4, {A,C,G,T} fre-

quencies: {.3 .2 .2 .3}, transition/transversion ratio:

2.0.

Taxa number presented more of a limitation in

actual data than in simulated data; on synthetic

datasets we obtained conclusive results on align-

ments with up to 30 sequences. This is most likely

due to the simplicity of the generated data; when

modeling evolution on real data, simple Markov

chain approaches greatly simplify the process, and

we sum out gaps as missing information, whereas

in the simulated data there were no gaps. Our simu-

lated analyses were very accurate, usually if a break-

point was detected, it was accurate within 10 po-

sitions. With marginal trees which differed only in

subtle ways, such as branch-length or deep branch-

ing patterns, our programs rarely detected changes,

whereas with changes at the leaves detection was

near very strong. More HMM states than recom-

binant regions wasn’t problematic, whereas having

too few HMM states led to inaccurate or missed

breakpoint predictions. We believe this to be the lim-

iting factor in our method; it was uncommon to see

a decisive model which employed more than 4 trees.

Recombination Analysis on Simulated Data, 23 Taxa, K=3

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0.
00

0.
50

1.
00

0 50 150 250 350 450 550 650

117 440

Figure 1: Synthetic alignment of size 700 × 23, with two
breakpoints (shown in red). Both breakpoints are

topology-changing and both are detected with great
accuracy, although there is some uncertainty in region

530-600.

Recombination Analysis on Simulated Data, 30 Taxa, K=2

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0.
00

0.
50

1.
00

0 50 150 250 350 450 550 650

333

Figure 2: Synthetic alignment of size 700 × 30, with one
breakpoint (red). The entire posterior distribution is

uncertain and no inference can be made. There is
somewhat less ‘noise‘ in the signal after position 333, but
other than this there is little to be learned from the results.

Recombination Analysis on Simulated Data, 30 Taxa, K=2

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 1000 2500 4000 5500 7000 8500 10000

0.
00

0.
50

1.
00

8762

Figure 3: Synthetic alignment of size 10,000 × 30, with
one breakpoint (shown in red). The recombination point
at 8762 is found, despite having to compare trees with 30
taxa. Longer alignments tend to have a clearer/stronger

phylogenetic signal, which may be why this
recombination was detected while the breakpoint in

Figure 2 was not.

Many Taxa Intuitively, our methods will become

less powerful the more taxa are included in the

alignment, since phylogenetic tree estimation be-

comes more and more difficult. Note that there are

many ‘spikes’ in the posterior distribution in posi-

tions 500-600 Figure 1, signifying uncertainty of in-

ference, and in Figure 2 the posteriors are uninfor-

mative. Still, the program is often able to do quite

well even with many taxa, such as in Figure 3, where

the posteriors are somewhat noisy but it is still clear

where the change happens. The ability to include

many taxa in a recombination analysis is very valu-

able, especially when the involved species are un-

known. The reason for the decay in inference is that

a group of phylogenetic trees with many taxa will

have very similar likelihoods, and thus differentiat-

ing between them in order to partition an alignment

is a difficult task.

Ancient Recombination In situations where recom-

bination has occurred long ago, ‘deep’ in the phy-

logenetic tree, an entire subtree is transferred. This

type of recombination is typically not detected very

well by our method, since the ideal phylogenetic

trees differ in their branching near the root, as op-

posed to near the leaves. This leads to the infer-

ence algorithm modeling the two regions by a single

topology, since the likelihoods of the actual different

trees is relatively similar. Practically speaking, this is

not as clinically important as detecting recent recom-

binations. In a typical inter-subtype recombination

analysis, the reference strains are taken to be ‘pure’

in their subtype, and the search for recombination

only concerns the present-day clinical species. In the

case when a few taxa in a large tree (i.e. 2 taxa in a

30-taxa tree) are transferred, this is usually detected.

This could arise when analyzing a group of clinical

isolates against a set of reference strains where two

of the isolates had undergone similar recombination

events. Figure 4 and 5 show an example where an

ancient recombination is missed and a recent leaf-

changing topology change is clearly detected.

Too many HMM states When the number of tree-

states is larger than the number of distinct regions

Recombination Analysis on Simulated Data, 16 Taxa, K=3

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0.
0

0.
4

0.
8

0 50 150 250 350 450 550 650

585124

Figure 4: Synthetic alignment of size 700 × 16, with two
breakpoints. Breakpoint at 124 (orange) changes the

topology near the root of the tree, whereas breakpoint 585
(red) changes tree topology near the leaves (see topologies

in Figure 5).

Figure 5: Tree topologies for different regions in Figure 4.
The transformation between trees (1-124) and (125-585)
involves a subtree transfer deep in the tree and so the

breakpoint at position 124 goes undetected. In contrast, the
difference between (124-585) and (585-700) involves

transferring leaf 13, which is more readily detectable.

in the alignment, this is typically not a problem, as

seen in Figure 6. One of the trees either remains at

low posterior probability or only appears for very

small regions. In this way, the training algorithm

recognizes that it has an ‘extra’ tree that it doesn’t

need to accurately model the data. In some cases,

however, this extra state can be employed to model

a more highly-diverged region which has a different

optimal topology, but which is not actually a recom-

binant region. In Figure 6, the blue tree topology re-

mains at low probability except for two very short

regions, and the breakpoint is still well-predicted.

Recombination Analysis on Simulated Data, 6 Taxa, K=2

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 50 150 250 350 450 550 650

0.
00

1.
00

153

Recombination Analysis on Simulated Data, 6 Taxa, K=3

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

0 50 150 250 350 450 550 650

0.
00

1.
00

153

Figure 6: When K=3, but there are only 2 recombinant
regions, the third tree is unused except for a very short

region near the crossover point, and a spike near bp 300.

Too few HMM states When the number of recombi-

nant regions is more than the number of tree-states

in the HMM, this has mixed effects. In Figures 7

and 8, the dataset actually had 5 breakpoints, and

each region was topologically distinct, but only 4

resp. 6 trees were used to train the model. Some-

times topology shifts are detected, even if the this

region does not have its own tree to train, but in

general the model has a difficult time decisively de-

tecting breakpoints. Adding more states, as Fig-

ure 8 attempts, does not appear to enable detect-

ing more regions, leading us to believe that num-

ber of distinct-topology regions of the alignment is

the limiting factor in our methods. We are investi-

gating more robust initialization and training meth-

ods which might enable training many more states.

The requirement that the different tree topologies

fit together to form an ARG somewhat constrains

the trees to look rather similar. If we relax this re-

quirement, trees can differ by more than 1 subtree

prune and regraft move (the operation of detach-

ing an edge and reattaching it somewhere else in the

tree), which leads to more radically distinct topolo-

gies. When we simulate alignments with these sorts

of topologies, we are more readily able to detect 5 or

more regions, as shown in Figure 9.

Small regions Window-sliding methods typically

perform badly in detecting small regions (eg less

than 200 bp), whereas we are able to reliably de-

tect small regions if they have distant supporting re-

gions, and often even if they don’t. In our method,

all the information in the alignment is combined to

construct trees, allowing distant but similar regions

to collaborate in training trees which improves de-

tection. If the short regions have a topology in com-

mon with a longer region in the alignment, they are

typically detected very well, because their tree was

mostly trained elsewhere in the alignment. If they

represent a unique topology, it is difficult to con-

struct a tree on such a small region, and inference

is limited. If there are several small regions of a

unique topology, however, they can combine their

information to make detection more feasible. Figure

10 shows results on an alignment with four small

recombination regions which are all detected accu-

rately. The small regions at 1000-1100 and 1600-1700

pool together their phylogenetic signal in order to

train the black tree topology.

Methods in Detail

Definition: The Ancestral Recombination Graph (ARG)

is a labeled directed acyclic graph in which nodes

correspond to species and edges correspond to evo-

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

Recombination Analysis on Simulated Data, 15 Taxa, K=4
0.

00
0.

50
1.

00

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

407 5046 5696 8843
324 3799 4911 5635 8845

Figure 7: When K=4, but there are actually 6 recombinant regions, inference is hampered. There are too many
distinct topologies to train and the model is unable to accurately partition the alignment, leading to one breakpoint

undetected and one (4911) predicted poorly. The predicted breakpoints (green) which are close to the actual simulated
breakpoints (red) are labeled above the alignment. Those regions which are predicted have somewhat inconclusive

posterior distributions, making inference difficult.

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

Recombination Analysis on Simulated Data, 15 Taxa, K=6

0.
00

0.
50

1.
00

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000

4973 5620 8810
324 3799 4911 5635 8845

Figure 8: Using the same data as Figure 7, but setting K=6, we still get 2/5 breakpoints undetected. The training
algorithm has a difficult time employing more than 4 trees in the HMM. In contrast to Figure 7, the posteriors are quite

decisive and the predicted breakpoints are reasonably accurate.

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

Recombination Analysis on Simulated Data, 15 Taxa, K=5

0.
00

0.
50

1.
00

0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

93 388 1274 1519 1753
93 389 1275 1518 1759

Figure 9: Using data generated with arbitrary tree topologies, rather than ones that fit together to form an ARG, we
are able to train 5 distinct trees, and locate the breakpoints with great accuracy. Relaxing the ARG requirement allows
for radically different tree topologies which are easier for the program to detect. This alignment contained 6 distinct

regions, but the first and last were somewhat similar, and here they are detected as being the same. Since these two are
not neighboring, all breakpoints are detected well.

Alignment Position (bp)

P
os

te
rio

r
P

ro
ba

bi
lit

y

Recombination Analysis on Simulated Data, 7 Taxa, K=3

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500

0.
00

0.
50

1.
00

1000 1600 6300 7300 8400

Figure 10: Small recombinant regions. In addition to the main breakpoint at position 6300, this alignment contains
four small crossover regions of size 100 bp (one label per small region, for clarity). The regions at 7300 and 8400 are of
the same topology as the large grey region in the first half of the alignment, and so they are detected remarkably well

(all four breaks accurate within 4 positions). The regions at 1000-1100 and 1600-1700 contain their own topology which
appears nowhere else in the alignment, and so their information is contributed only to the black tree. This allows the

black tree to be trained especially for those regions, leading to very close detection (accurate within 2 bp).

lutionary relationships. Leaf nodes are assumed to

be present-day species, and are taken to be observed,

whereas ancestral nodes are hidden data. Edges can

be solid or dashed, where a solid line indicates that

all of the child’s genetic material evolved directly

from the parent’s. A leaf under a dashed line rep-

resents a recombinant child, in which some of their

sequence material came from one parent and some

from the other. If the position of recombination is as-

sumed to be known, then an ARG is able to convey

all evolutionary information of a group of present-

day taxa [3]. In contrast to a phylogenetic tree, this

graph contains nodes that have more than one par-

ent, in this case, node 3. As node 4 and node 5 re-

combined or crossed over to form node 3, part of 3’s

sequence is descended from node 4 and the other is

descended from node 5.

Definition: A Marginal Tree is a phylogenetic tree

arising from an ARG by way of realizing a set of dot-

ted edges such that each leaf node has exactly one

parent, and internal nodes without children are re-

moved. It is assumed that each position of the align-

ment can be described by single marginal tree.

At any given point in species 3’s genome, its an-

cestry depends on which of the dotted edges was

realized above it. In the ARG shown in Figure ??,

there are two possibilities, and thus there are two

marginal trees that exist within the ARG. These trees

are shown in Figure ??, with realized edges shown

as solid and non-realized edges in gray.

Parameters and Notation Here we describe the no-

tation we use throughout this paper and the param-

eters we wish to learn from the data. In general we

follow the notation of [2] and [6], extending it when

necessary. While at present we must specify K, the

number of trees in the model, an eventual goal is to

be able to learn K from the data, allowing the train-

ing routine find the best number of states.

• D is a multiple sequence alignment, taken as in-

put. This is an array of N biological sequences,

each of length M in which each column is as-

sumed to have evolved from a single ances-

tral character [6], except when gaps are present.

Gaps are treated as missing information. We use

the terms ‘position’ and ‘column’ interchange-

ably as our model generates one column per po-

sition.

• {(T, t)k} is a set of phylogenetic tree topologies

T and branch-length vectors t for each of the

K hidden states. Strictly speaking, {(T, t)k} is

not a parameter of our model, but it actually is

part of the architecture of the model, since it

models how sequences in the multiple align-

ment came to their present state via a certain

evolutionary pathway. This is a subtle point

since {(T, t)k} dictates θe, which is a parame-

ter matrix of the HMM. Thus, whenever we re-

estimate {(T, t)k}, we are performing model se-

lection as opposed to parameter estimation.

• θs is a stochastic matrix of size K ×K in which

the k, l entry indicates the probability of transi-

tioning from tree k to tree l.

• θe is a stochastic matrix of size K × M where

N is the number of sequences in the multiple

alignment and M is the length of the alignment.

θek,m represents the probability that tree k emit-

ted column m of the alignment. We recognize

that our choice of tree topologies defines our

emission matrix in the following way:

θek,m = P (Dm|(T, t)k) (1)

Where Dm is the mth column of the alignment

data and P (Dm|Tk, tk) is the marginal likelihood

of tree k producingDm, which can be computed

by Felsenstein’s pruning algorithm [5].

• For simplicity and clarity of notation, we will

henceforth refer to the set {(T, t)k}, θe, and θs

as θ or the “parameter set.” We keep in mind

that {(T, t)k} is actually part of the model struc-

ture, but since we are updating these three ob-

jects at each iteration, it makes intuitive sense to

refer to them as a unit. When describing an al-

gorithm such as EM where the parameter set is

iteratively improved, θ(n) refers to the parame-

ter set at the nth iteration.

• P (D|θ) represents the likelihood of the ob-

served alignment data under our model and a

particular parameter set θ.

• With X = {x1, x2...xM} representing the hid-

den data (in this case an assignment of phy-

logenetic trees to columns of our alignment),

P (D,X|θ) is the probability of the fully ob-

served data under the model, given by the equa-

tion

P (D,X|θ) = θsstart,x1

M∏
i=1

θexi,Di
θsxi,xi+1

(2)

Further, the hidden and observed data are re-

lated by the property that

P (D|θ) =
∑
x

P (D,x|θ) (3)

Where x ranges over all MK possible sequence

assignments to the hidden nodes.

• P (xm = k|, D, θ) denotes the posterior proba-

bility of a particular state emitting a certain col-

umn, conditioned on the parameters and align-

ment data. For details on the computation of

this quantity, see [2].

• Pa→b(t) provides an underlying evolutionary

model specifying the probability that symbol a

evolved into b under time t, for a, b ∈ Σ, t ≥ 0,

as well as a prior distribution over Σ. This is

assumed to be part of the evolutionary process

and in this work we do not try to refine the

model as we estimate the previous parameters.

Baum-Welch Algorithm The special case of the

EM algorithm applied to HMMs is known as the

Baum-Welch algorithm [2]. This takes advantage

of the tree-like structure of HMMs, using the sum-

product algorithm to efficiently calculate expected

hidden data statistics. In describing the Baum-Welch

method, we introduce the following terms, follow-

ing the notation of Durbin et al [2]:

The Forward Probability (F)

Defined as F [m, k] = P (D1...m, xm = k|θ), this

represents the probability of the observed data

up to and including column m, requiring that

tree k produced column m. The Forward prob-

ability gives us a simple way to calculate the

probability of the observed set of columns un-

der a particular parameter set:

P (D|θ) =
∑
k

F [k,M]θsk,end (4)

This is intuitively understood as the probabil-

ity of the sequence up to M (i.e. the whole se-

quence), summed out over all possible states for

the last position, and then accounting for the

transition into the End state.

The Backward Probability (B)

Defined as B[m, k] = P (Dm+1,m+2...M |xm =

k, θ), this is analogous to the Forward probabil-

ity, but starting at the end of the sequence. Note

that here we compute a conditional as opposed

to a joint probability (although both are condi-

tioned on θ).

Posterior Probabilities

Using these Forward and Backward probability

arrays, we can now calculate the posterior proba-

bility of a certain hidden state assignment given

the observed alignment columns. We use the

following property:

P (xm = k|D, θ)

=
P (D,xm = k|θ)

P (D|θ)

=
P (D1...m, xm = k|θ)P (Dm+1...M |xm = k, θ)

P (D|θ)

=
F [m, k]B[m, k]

P (D|θ)
(5)

Where P (D|θ) is computed by way of equation

(4). These probabilities are useful for both in-

ference and training. First, in searching for op-

timal parameters, the posteriors are what allow

us to build different trees on different parts of

an alignment. At each iteration we use these

posterior probabilities to weight hidden data

counts in the tree-optimization step. Second,

once we are satisfied with the parameters and

are attempting to assign trees to columns, the

posteriors can be of great use. The quantity

P (xm = k|D, θ) takes into account the HMM

structure, whose transition probabilities put a

restrictive prior probability distribution on the

number of recombination crossovers. This not

only allows for a more realistic interpretation,

but also allows us to adjust the sensitivity and

specificity of the algorithm by controlling the

entries of θs.

Expected Counts

The Forward and Backward calculations also

enable simple computation of expected hidden

event counts, namely the number of transitions

k → l and emissions of string σ from state k.

In this application, we only estimate the transi-

tion counts, and use Structural EM to deal with

the emission maximization. To get the expected

number of transitions k → l, we use:

E [#k → l]

=
M∑
m=1

P (xm = k, xm+1 = l|D, θ)

=
F [m, k]θsk,lθ

e
l,Dm+1

B[m+ 1, l]

P (D|θ)
(6)

With these expected counts in hand, updating

the parameter θs is trivial:

θ̂sk,l =
E [#k → l]∑

l′∈ΣE [#k → l′]
(7)

Structural EM Structural EM is an iterative model

selection scheme aimed at finding the most likely

phylogenetic tree model for a multiple alignment

[6]. It follows the prototypical EM structure in that

it alternates between estimating hidden data and

maximizing the model until a critical point in the

likelihood surface is reached. In the E-Step, the

tree topology and branch lengths are held constant

and hidden statistics are estimated, namely the char-

acter transition counts between nodes. In the M-

Step, a new model (a phylogenetic tree) is selected

and its branch lengths chosen based on the esti-

mated hidden statistics. This is a useful method as

it makes maximum likelihood phylogenetics com-

putationally feasible with long sequences and many

taxa. Further, its estimation step allows for differen-

tial column-weighting which allows us to progres-

sively “focus” a tree on particular alignment region.

Structural EM Steps We give a high-level descrip-

tion and the reader is referred to the original Struc-

tural EM paper for more detail [6]

Algorithm: Structural EM (SEM)

Input: An N × M gapless multiple alignment of

biological sequences

Output: A phylogenetic tree (T, t) such that

P (D|(T, t)) is a critical point of the likelihood

surface

E-Step: Compute expected hidden data counts

Si,j(a, b), the expected number of transitions of

symbol a to symbol b from node i to node j.

M-Step Branches: With these counts, find the branch

length t̂i,j for each (i, j) pair (not necessarily

an edge in the tree) which would maximize the

contribution of edge (i, j) to the tree’s likelihood

function.

M-Step Topology : From this matrix of likelihood con-

tributions, construct a maximally-scoring topol-

ogy with the branch lengths chosen from the

previous step.

Incorporation into Phylo-HMM Training We

use SEM in training our phylo-HMM to estimate

a better and better set of trees for our model at

each M-step. At each iteration we perform K

independent executions of SEM model selection,

where during the E-Step of each one, the counts

S
(k)
i,j (a, b) are weighted by the posterior probabilities

of the different alignment columns having been

generated by a particular tree. More precisely, while

maximizing the kth tree:

S
(k)
i,j (a, b) =∑

m

P (xm = k|D, θ)P (xi[m] = a, xj [m] = b|Dm, T, t)

Where P (xm = k|, D, θ) denotes the posterior prob-

ability of the mth column being produced by the kth

tree given the observed data, as computed in equa-

tion (5). This posterior-weighting scheme is a com-

mon phylo-HMM training strategy. Intuitively, if we

strongly believe that a column was generated by a

particular tree, we would like the next update of that

tree to have access to comparatively more informa-

tion from that column than if that column-tree pair

was unlikely. The higher a column is weighted for a

particular tree, the more closely that tree will come

to ‘fitting’ that column perfectly after the SEM step.

In the extreme case where P (xm = k|D, θ) = 1 for

certain columns and 0 for others, this is equivalent

to performing Structural EM on only the columns

for which P (xm = k|D, θ) = 1. As the EM train-

ing progresses, the hope is that the posterior distri-

bution will become more and more certain of which

trees go with which columns.

The above modified EM-algorithm is unusual in

that the M-step is another EM. This is known as a

nested EM, covered by [4]. This somewhat bends the

rules of EM which state that there must be a reliable

MLE for the model once the hidden data has been

estimated. In this case, we note that EM typically in-

creases drastically in likelihood in the first few iter-

ations and then increases very slowly, so it is impor-

tant to set the number of ‘inner’ iterations carefully.

If the EMinner is allowed to go until it converges,

then P (D|θ(n)) is guaranteed to increase monoton-

ically with each iteration of EMouter, but the speed

of this convergence will be greatly compromised. If

the EMinner is too restrained, irregular behaviour

of P (D|θ(n)) may be observed, and convergence of

EMouter is not guaranteed. Ideally, some middle

ground would be reached in which the EMinner is

allowed to run sufficiently so that EMouter increases

in likelihood with every (or almost every) step [4].

In our programs, the EMinner is set to run 2 itera-

tions of Structural EM which appears to be adequate.

Figure ?? shows the likelihood progression of 6 tri-

als from different start points on the same dataset.

Note that each trial increases monotonically, except

for a single ‘dip’ in likelihood midway through the

4th trial. In the points following this dip the likeli-

hood is regained and convergence does not appear

to be affected in the long run. The EM algorithm

makes its greatest strides in the first few iterations,

and then continues asymptotically towards the con-

vergence value. Also note that it appears below as if

the value towards which the likelihood tends in each

trial is independent of the start point. This is not

in general the case, and running an effective analy-

sis typically requires initializing the training scheme

from several random start-points.

BEGIN EDIT

Algorithm: Posterior Decoding

Definitions: Let π be a path of lengthm through the

state space of the HMM (discounting start and

end states), emitting the first m columns of the

alignment, with one state per column. Let M be

the total number of columns in the alignment.

We say that the state path is partial if m ≤ M ,

and complete if m = M .

Let πn denote the nth state in path π. The score

of path π is defined as S(π) =
∑m
n=1 P [πn, n]

where P [i,m] is the posterior probability that

column m was emitted by state i.

We say a state path π is valid if all its breakpoints

are more than ε apart. That is, there exist no

m,n > 1 with n −m < ε such that πm−1 6= πm

and πm 6= πn.

Let Π(i,m, e) be the set of all valid partial state

paths of length m, whose last e columns were

emitted from state i. (That is, for π ∈ Π(i,m, e)

and m − e < n ≤ m, we must have πn = i.) We

then define U [i,m, e] = maxπ∈Π(i,m,e) S(π) to be

the highest score of any such path, computed

recursively as follows.

Input: A k × M matrix of posterior state-column

probabilities, P [i,m], and a minimum break-

point separation ε.

Output: A complete valid state path π through the

HMM such that the score S(π) is maximal. Note

that a state path uniquely determines a set of

breakpoints {m : πm 6= πm+1}.

Recursion:

for i = 1 to k:

for m = 1 to M :

for e = 1 to min(m, ε):

U [i,m, e] = P [i,m] +

max

0 if m = 1

U [i,m− 1, e] if m > 1

U [i,m− 1, e− 1] if m > 1 and e > 1

maxi′ U [i′,m− 1, ε] if m > ε and e = 1

maxi′ U [i′,m− 1,m− 1] if 1 < m ≤ ε and e = 1

Final score Ufinal = maxi U [i,M, 1]

The score of the maximally-scoring path is Ufinal.

The path having this score can be recovered by a

straightforward traceback.

END EDIT

The terms in the max expression correspond to the

possible incoming paths, and can be intuitively un-

derstood in the following way:

BEGIN EDIT

0 if m = 1: for the first column in the alignment,

there is no incoming path. This term initializes

the dynamic program.

U [i,m − 1, e] if m > 1: the path stays in the same

state as the previous column. Since the incom-

ing path was in state i for at least e steps, the

current path must also have been in state i for

at least e steps.

U [i,m− 1, e− 1] if m > 1 and e > 1: the path stays

in the same state as the previous column. Since

the incoming path was in state i for at least e−1

steps, the current path must have been in state i

for at least e steps.

maxi′ U [i′,m − 1, ε] if m > ε and e = 1: the path

changes state outside of the first ε columns of

the alignment. To prevent breakpoints being

closer than ε, this is only allowed to happen if

the incoming path was in the same state for ε

steps.

maxi′ U [i′,m − 1,m − 1] if 1 < m ≤ ε and e = 1:

the path changes state within the first ε columns

of the alignment. To prevent breakpoints being

closer than ε, this is only allowed to happen if

the incoming path was in the same state for all

m− 1 of the previous columns.

END EDIT

References

[1] Arenas M Posada D. Recodon: Coalescent simula-

tion of coding DNA sequences with recombination,

migration and demography. BMC Bioinformatics

458.8(2007).

[2] Durbin R, Eddy SR, Krogh A, Mitchison

G. Biological Sequence Analysis. Cambridge,

1998.

[3] Hein J, Shierup H, Wiuf C.

Gene Genealogies, Variation and Evolution.

New York: Oxford, 2005.

[4] van Dyk D. Nesting EM Algorithms for Compu-

tational Efficiency. Statistica Sinica 10 (2000):203-

225.

[5] Felsenstein J. Evolutionary trees from DNA se-

quences: a maximum likelihood approach. Journal

of Molecular Evolution 17.6(1981):368-376.

[6] Friedman N, Ninio M, Pe’er I, Pupko T.

A Structural EM Algorithm for Phylogenetic

Inference. Journal of Computational Biology

9.2(2001):331-353.

