
Supplemental Text S1.  Analysis of additional, canonical computational function prediction 
methods 

 
In addition to the three main computational methods used in this study, we have also 
performed comparisons with three canonical approaches to function prediction.  Our 
intention with these comparisons is not to claim better or worse overall performance of 
these approaches (as benchmarking is not the aim of this study), but to demonstrate the 
generality of the conclusions presented in the main text concerning the importance of 
underlying data and algorithmic differences when performing gene function prediction. 
 
Description of Additional Methods 
 
We used three additional methods for protein function prediction:  a support vector 
machine (SVM) [1] trained on only microarray data, an SVM trained on diverse data 
sources, and a normalized microarray correlation (MC) approach. 
 
SVM (microarray data) – We used the SVM Light library[1] and the same microarray 
data underlying both SPELL[2] and MEFIT[3].  The microarray data was normalized 
such that all datasets contained log base 2 transformed values and was concatenated into 
vectors of length ~2000 for each gene.  The gold standard positive examples consisted of 
the original 106 genes annotated to the ‘mitochondrion organization and biogenesis’ GO 
term (GO:0007005), and negative examples consisted of genes with a specific annotation 
at or below the GO functional slim boundary (i.e. terms specific enough to be 
functionally meaningful)[4] but not to the term of interest.  We performed fifty iterations 
of training and classification, each using a random selection of half of the gold standard 
examples for training and obtaining classification results for all genes.  Final prediction 
values were determined for each gene by averaging classification results over all 
iterations where a gene was not included in the training set.  These values were sorted to 
produce the final ordering of predicted genes. 
 
SVM (diverse data) – We applied a similar approach as in the microarray data case, but 
here we included many additional data types utilized by bioPIXIE[5,6], including 
physical interaction data, genetic interaction data, localization, etc.  Each additional data 
source was converted into a normalized profile form in a manner appropriate to each data 
type, and these profiles were concatenated together to form the evidence vectors for each 
gene. 
 
Microarray Correlation (MC) – For this approach, we examined the Fisher Z-
transformed correlations of each gene to the set of 106 genes annotated to the 
‘mitochondrion organization and biogenesis’ GO term (GO:0007005).  We used a similar 
approach as in SPELL, where pairs of genes from the 106 were used as queries and every 
other gene was ranked by their average correlation to the query pair.  All possible pairs 
were used to create ranked lists, and all of these lists were rank averaged together to 
produce the final ordering of predicted genes.  (Note that this procedure performs the 
Fisher Z-transformation portion of the SPELL approach, but does not use SVD-based 
signal balancing nor were datasets weighted by their relevance to the query sets.  We also 



performed this procedure using raw Pearson correlations across all data, but those results 
were too poor to make meaningful comparisons with the other approaches.) 
 
Comparison of Results 
 
We selected the top 40 predictions from each of these additional approaches in the same 
way as for the original approaches (the top 20 genes of unknown function, and the top 20 
genes with a known, but non-mitochondrial function).  By comparing these predictions 
between all of the applied methods, we observe the same basic patterns and biases as 
among the original three methods.  We show the overlaps between these approaches and 
the original approaches in Supplementary Figure S1. 
 

 
Supplementary Figure S1 – Overlap between the top 40 predictions made by additional, 
canonical methods and the three methods used in the main study.  (A-C) shows 
comparisons between the SVD based methods and the three main methods.  (D) shows 
the overlap among the main methods, and is reproduced from Figure 4B.  (E-F) shows 
comparisons between Microarray Correlation (MC) and the three main methods. 
 
Importance of Underlying Data 
Just as the microarray-based methods SPELL and MEFIT agreed more with each other 
than with bioPIXIE, which is based on diverse underlying data, the SVM trained using 
microarray data agrees more with SPELL and MEFIT than does the SVM trained using 
diverse data (see Fig S1A-B).  Also, using simple microarray correlation (MC) agrees 
better with SPELL and MEFIT than bioPIXIE (see Fig S1E-F).  This agreement also 
extends to some of the specific functional breakdowns of these predictions, as shown in 
Supplmentary Figure S2.  The SVM based on microarray data, the MC approach, 
MEFIT, and SPELL all perform very well for the subset of mitochondrial biogenesis 



genes related to the mitochondrial ribosome and translation, which is an area where 
microarray data has been shown to perform well[4].  Additionally, the microarray-based 
SVM performed well for the sub-function of mitochondrial respiratory complex assembly 
(as did MC to a lesser extent), which agrees with our observation in the main text that 
microarray data may contain more information about this sub-function than many other 
data sources, such as physical interaction data.  Further, as shown in Supplementary 
Figure S3, the top predictions of all four of these microarray-based methods are largely 
localized to the mitochondrion, while the methods based on diverse data made fewer 
predictions similarly localized.  This difference is consistent with the observation that 
microarray data contains information regarding mitochondrion-localized complexes 
involved in translation and respiration. 
 
 

 
Supplementary Figure S2 – Performance of the three main methods and three additional 
methods on sub-functions of mitochondrial organization and biogenesis.  This figure is 
analogous to Figure 5 in the main text and was generated in the same manner. 
 
Importance of Algorithmic Foundations 
Interestingly, we also observe large differences between the diverse data based bioPIXIE 
and the SVM trained using diverse underlying data (see Fig S1C).  We can understand 
this difference by examining the functional and localization breakdowns of predictions 
made by all of the methods (see Fig S2 and S3).  These analyses show that unlike 
bioPIXIE, the SVM trained on diverse data does not make any actin-localized predictions 
and does not perform well for the sub-functions of ‘mitochondrial distribution’ or 
‘mitochondrial fission and fusion.’  This difference is most likely due to the different 
algorithmic foundations of these two approaches.  In short, bioPIXIE’s algorithm utilizes 
a pair-wise graph of predicted gene interactions to make predictions, while the SVM 
approach attempts to find the best binary classification of genes.  This can greatly affect 
predictions when subsets of genes are strongly related within, but not between, these 
subsets.  In this case, of the 106 genes used as positive examples to train these methods, 
only 11 (10%) are localized to the actin cytoskeletion and only 9 (8%) are known to be 
involved in mitochondrial fission and fusion.  However, in the pair-wise network 
generated by bioPIXIE these groups are very heavily connected to each other and to 



additional candidate predictions.  This causes bioPIXIE to perform well for these groups 
and produce many predictions related to the interaction between mitochondrion and the 
actin cytoskeleton required for proper mitochondrial motility.  Conversely, the SVM 
approach is likely to overlook these strong, but infrequent, relationships in favor of 
finding other genes related more generally to the entire 106 genes used for training. 
 

 
Supplementary Figure S3 – Localization of the top 40 predictions made by the main 
three methods and three additional methods.  This figure is analogous to Figure 6A in the 
main text and was generated in the same manner. 
 
Discussion 
 
The prediction results from an SVM based on microarray data, an SVM based on diverse 
data, and simple microarray correlation (MC) generated predictions with characteristics 
consistent with our conclusions in the main text regarding the importance of underlying 
data and algorithmic foundations.  This further strengthens our observation that the 
functional aspects of generated predictions must be considered in addition to their 
accuracy in order to make meaningful comparisons between computational function 
prediction approaches.  While we did not experimentally test the unique predictions 
among the top 40 produced by the SVMs or MC approach, the accuracy of the 
predictions that overlapped with the approaches used in the main study was between 65-
73%.  This is very comparable with the accuracy of the overlapping predictions in the top 
40 of MEFIT, SPELL, and bioPIXIE, which was 75%.  As such, we could reasonably 
expect that a number of the unique predictions produced by the SVMs and MC approach 
to be accurate.  Thus, just as using an the ensemble of three methods in the main study 
broadened the biological scope of the predictions examined, we could potentially further 
improve our ensemble by incorporating additional function prediction techniques. 
 
 
 



References 
 
1 Vapnik VN (2000) The Nature of Statistical Learning Theory.  Springer. 
2 Hibbs MA, Hess DC, Myers CL, Huttenhower C, Li K, Troyanskaya OG (2007) 

Exploring the functional landscape of gene expression: directed search of large 
microarray compendia. Bioinformatics 23: 2692-2699. 

3 Huttenhower C, Hibbs M, Myers C, Troyanskaya OG (2006) A scalable method for 
integration and functional analysis of multiple microarray data sets. Bioinformatics 22: 
2890-2897. 

4 Myers CL, Barrett DR, Hibbs MA, Huttenhower C, Troyanskaya OG (2006) Finding 
function: evaluation methods for functional genomic data. BMC Genomics 7: 187. 

5 Myers CL, Robson D, Wible A, Hibbs MA, Chiriac C, et al (2005) Discovery of 
biological networks from diverse functional genomic data. Genome Biol 6: R114. 

6 Myers CL, Troyanskaya OG (2007) Context-sensitive data integration and prediction of 
biological networks. Bioinformatics 23: 2322-2330. 

 


