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1. Modularity measure 

 In this section, we define the modularity measure used to quantify the 

modularity of the interaction network defined by the matrix A. An NxN matrix A can 

be mapped to a 2N-node network. In this mapping, the matrix element A(i,j) 

represents the weighted directed interaction between input-node j to output-node 

(N+i) (as described in Fig. S1). 

 To quantify network modularity we employed the measure based on the 

approach of Newman and Girvan [1,2], refined to weighted directed networks. 

Briefly, the Newman and Girvan algorithm finds the division of the nodes into 

modules that maximizes a measure Q. This measure is defined by the fraction of the 

edges in the network that connect between nodes in a module (or ‘community’ as 

termed by the authors) minus the expected value of the same quantity in a network 
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with the same assignment of nodes into modules but random connections between the 

nodes [3]. 

 

 

 
Figure S1. The NxN matrix A represents a weighted interaction network with 2N nodes.  

   

 To measure modularity in a directed network where the edges have different 

weights we define the Q measure as follows: 
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where K is the number of modules, W is the total sum of the interaction weights in the 

network, ws is the total sum of the interaction weights between nodes in module s, ds
in 

is the sum of the weighted in-degrees of the nodes in module s and ds
out is the sum of 

the weighted out-degrees of the nodes in module s. We assume all weights are non-

negative, otherwise absolute values are taken. 

We further refined this measure, as described in [4], by normalizing it with 

respect to randomized networks, (randomized matrices A of the same dimension N). 

This is based on the observation that randomized networks typically do not show 

Q=0, due to the fact the even a random network has at least one partitioning of its 

nodes that yields a Q value well above zero. To address this, we used a normalized 

measure Qm:  

(S2) Qm=(Qreal-Qrand)/(Qmax-Qrand)      
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where Qreal is the Q value of the network, Qrand is defined as the average Q value of 

randomized networks, and Qmax is defined as the maximal possible Q value of the 

network.  

 To compute the modularity measure of a network, Qm, we first calculated its 

Qreal. To measure Qrand we used 104 random matrices. To estimate Qmax we used an 

upper bound Qmax=1-1/K   where K is the maximal number of modules, which can be 

considered here as N (the dimension of the matrix A).   

 

2. Genetic Algorithm 

The main text employed Hill-climbing dynamic to solve the evolution over 

time. Here, we describe results using a different evolutionary dynamics,  employing a 

standard genetic algorithm (GA) [5-7] using the Matlab GA toolbox. In the genetic 

algorithm, the genome describes the values of the matrix A. We started with 

homogenous population initialized to a random A value with |aij|<1. Mutations were 

applied with probability Pm=1 per gene (matrix element) per generation. A mutation 

randomly changed  elements in A by a shift drawn from the Gaussian 0±0.005 

(mean±SD). Population size was 500. Selection was fitness proportional, where the 

probability of passing to the next generation was proportional to fitness of each 

individual. Evolution time was defined as the number of generations required to reach 

distance D(t) < D0 (D0=0.1) from the desired goal (rms distance). We find that using 

genetic algorithms, there is a rapid convergence to the modular solution under MVG, 

and slow convergence to the optimal but non-modular solution under fixed goals 

(Figures S2-S4). Thus, we observe qualitatively similar results to the analytic results 

described in the paper.     
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Figure S2. Evolutionary trajectories (using genetic algorithms) under fixed goal. a. A typical 

trajectory under fixed goal with G1=[v=(1,1), u=(1,1)] presented on the plane of the two matrix 

elements  a11 and a22. Black points represent best individual in the population, at a 20 generation 

temporal resolution. Empty circle: optimal non-modular solution (0.5,0.5); Full circle: modular solution 

(1,0). The cost parameter is ε=0.001.  

 



5 
 

 
Figure S3. Evolutionary trajectories, using genetic algorithms, under MVG.  A typical trajectory 

under MVG varying between G1=[v=(1,1), u=(1,1)] and G2=[v=(1,-1), u=(1,-1)] presented on the a11 

and a22 plane. Black points represent best individual in the population, at a 20 generation resolution. 

Empty circle: optimal non-modular solutions (0.5,0.5) and (0.5,-0.5); Full circle: modular solution 

(1,0). Goals switched every E=100 generations. The cost parameter is ε=0.001.  
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Figure S4. Speedup increases with problem difficulty, simulations using genetic algorithms. a. 

Time (no. of generations) to converge on the solution as a function of ε. Red dashed-line: under fixed 

goal evolution (TFG), black: MVG with different goal switching times (E), increasing in the direction of 

the dashed arrow. (E=2,10,20,100). b. The Speedup S as a function of goal switching times (E). Lines 

are for different ε values, increasing in the direction of the dashed arrow (ε = 

0.01,0.001,0.002,0.0001).c. Speedup as a function of TFG. The speedup scales linearly with TFG (as a 

power law S~(TFG)α with an exponent α=1.0±0.1). Lines are for switching times (E=10,50,100), 

increasing in the direction of the dashed arrow.  
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3. Speedup Calculation  

The speedup (S) is defined as the ratio of the time, starting from random initial 

conditions, to reach the solution in a fixed goal problem (TFG) to the time the system 

reaches a solution in a modularly varying goal problem (TMVG)  : 

MVG

FG

T
TS =  

Note that the solution in an MVG problem is not a point but rather a limit cycle whose 

amplitude depends on the epoch time (E) and on the difficulty of the fixed goals 

composing the problem (ε). Accordingly, TMVG was calculated as the time at which 

the system reaches its limit cycle. The amplitude of the limit cycle was also used to 

determine the threshold for the convergence of the system to its fixed goals (see Fig. 

S5). 

 

  

 

 
Figure S5. A schematic view of convergence under fixed goal (green lines) and under modularly 

varying goals (blue broken line). The amplitude of limit cycle is a function of epoch time (E) and η. 

TFG is defined as the time it takes the system to reach the same distance from the optimal solution.  

 

In case of nearly modularly varying goals, the definition above was modified 

to take into account the parameter characterizing the distance between the goals η 

(see Fig. S6). The limit cycle of the system was calculated, and the minimal distance 
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between the solution and the corresponding modular solution was found in each 

epoch. The threshold for calculation of TFG was then taken as the mean of the two 

distances: Rm= Mean(R1,R2).  

 

 
 

 
Figure S6. A schematic view of convergence under fixed goal (green lines) and under nearly 

modularly varying goals (blue broken line). The amplitude of limit cycle is a function of epoch time E) 

and η.  

 

4. The block structure of the evolved matrix is determined by the correlation 

between the goal input and output. 

 Here we show the relation between the block structure of the evolved matrix 
(A) and the covariance structure of the goal input and output vectors (V and U).  
Here we will treat the inputs and outputs as independent random variables 
 ( )N21 vvvV ,,, K=  
 ( )N21 uuuU ,,, K=  
By definition the goal G is modular if there exists a block diagonal matrix M such that 
MV=U (up to permutations of the columns of V and U). In terms of the v’s and u’s 
this reads: 

 ∑
=

=
N

j
jiji vMu

1
.  

Since each variable is sampled k times, the means are: 
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Here we used the linearity of the mean operator. Similarly, the second moments are: 
(S4) 
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The covariance matrix of the goals input and output pairs can now be calculated: 

(S5)  ( ) ( ) ( )∑∑
==

=−=−=
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Note that like M, the covariance matrix is an NxN matrix.  Since the v’s are 
independent variables, ( ) ( ) pjjjp vvvC δσ 2, = . Substituting this into Eq. (S5), doing the 
summation, and solving for Mij we find: 
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Writing the covariance matrix in terms of the correlation matrix   
 ( ) ( ) ( ) ( )jijiji vuvuvuC σσρ ,, = , 
we get 
(S7) ( ) ( ) ( )jijiji vMuvu σσρ =, . 
This can be further simplified by calculating ( )iuσ : 
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Substituting this into (S7) we get 
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Without loss of generality we can assume that the inputs are set to have zero mean 

and unit standard deviation, namely 

(S9) ( ) ( ) 12 == jp vv σσ  

Accordingly, if we define    
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That is the matrix M normalized so that the norm of the rows is 1, we finally obtain 

(S11) ( )jiij vuM ,~ ρ= . 

Note that the structures of M and that ijM~  are the same. Now based on appendix A (of 

the main text)  we know that under MVG, the matrix A evolves towards the matrix M. 

And so it must evolve towards the structure of the correlation matrix between the 

input and output pairs.  

 

5. Calculation of the critical epoch time for speedup. 

 In this section, we comment on the range of goal switching times where 

speedup can be observed in MVG relative to fixed goal problems. Following Eq. (5) 

in the main text, the evolution of the components aij t( ) of the mapping
  
aij

*  matrix A 

within a single epoch can be described by the following equation: 

 

(S12) 
  
aij t( )= Kne

−λnt

n

N

∑ + aij
*  

 

Where 
  
aij

*  is the optimal solution and the prefactors Kn{ } are determined by the 

eigenvectors corresponding to λn{ } and the initial conditions in that particular epoch. 

Taking the case of N=2 we can write: 

 

(S13) 
  
r t( )= aij t( )− aij

* = K1e
− λ1t + K2e

− λ2 t  

 

Where  λ1  is the large eigenvalue and λ2  is the small one. The evolution can thus be 

decomposed into a fast and a slow component corresponding to the large and small 

eigenvalues respectively. Generally, at the beginning of the epoch the first component 

decays faster and governs the dynamics. However, at a certain switching rate the first 

component will become arbitrarily small and the second slowly decaying component 

will be dominant. It is beyond this point that speedup ceases. 
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Formally, for rapid evolution to occur, the rate of the rapid decay must be larger than 

the rate of the slow decay in each epoch. Hence: 

 

(S14) 
  

d
dt

K1e
−λ1t( )>

d
dt

K2e
−λ2t( )  

 

Or: 

 

(S15)   λ1K1e
−λ1t > λ2K2e

−λ2t  

  
e λ1 −λ2( )t <

λ1K1

λ2K2
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1
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log
λ1K1

λ2K2

⎛

⎝⎜
⎞

⎠⎟
 

 

Thus a general condition for speedup is that the epoch time will be less than some a 

epoch time: 

  (S16) 
  
Ec =

1
λ1 − λ2

log F λ1,λ2 , K1, K2( )( ) 

Where 
 
F ( ) is a function of the initial conditions (and the eigenvalues) upon which 

 Tc  depends weakly.  

 

For epoch times obeying  T < Tc  the dynamics is governed by the rapid decay 

component only (see Fig. S4 b). Hence, as long as T < Tc  the evolution time is 

essentially the same. However, if the epoch time increases beyond Tc  the added time 

will be spent along the slow component, and total evolution time will increase with 

the added time being linearly proportional toT − Tc . 

 

 

6. Other cost functions     
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 As mentioned in the main text, one can test various cost functions (the benefit 

function is maintained as the Frobenius norm since we measure the Euclidian distance 

from the goal). The cost function we presented in the main text has the advantage of a 

fully solvable linear dynamics. To study the dynamics governed by other cost we used 

two different methods: numerical analysis and simulations using genetic algorithms. 

We find qualitatively similar results and dynamics to those found in the main text, 

under a wide range of convex cost functions. Concave cost functions can lead to 

scenarios in which the modular solution is in fact the optimal solution (either local or 

global). Thus it can be found in FG problems as well as in MVG problems. However, 

it is not guaranteed that the system will actually reach the modular solution since it 

may be flanked by other local optima. This is avoided in MVG problems. The non-

convex cost |a| is of special interest since it is characterized by a true fitness plateau.   

To study a broader range of cost functions, we examined a family of cost functions 

such as: 

(S17) ∑
+
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ij
n

n
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aK

a
c ε   

where n > 0 and 1≅K . For n>1 these cost functions are convex (concave) for 

ijaK >  ( ijaK < ), and strictly concave for 0 < n < 1. 

Specifically, in the limit ijaK >>  the cost function (S17) reduces to 

∑−=
ij

n

ij
n aKc ε which upon the redefinition nKεε →  and n=2 becomes the cost 

function of the main text. Now, although the dynamic is affected by the new cost 

function, the result that in a MVG problem the obtained solution is the modular one 

still remains.  Here we show this analytically in a 2D case by calculating the equations 

of motion described by the modified fitness function, and looking for the equilibrium 

points.  

In the simple 2D FG problem we get for the first row of the matrix A 

( ) ( )2
1112121111

n
12

n
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.
 

Assuming that the system is allowed to reach the low gradient ridge, and is now 

constrained to move along it (that is the benefit is maximal) the matrix elements are 

related by:  

 0uavav 1112121111 =−+ . 
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Accordingly in the steady state solution  
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Where IN-k is the N-k dimensional identity matrix.  
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In order to proceed we make use of the fact that +ΛΛ=⎟⎟
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Using the definition of C we obtain: 

( ) ( ) CBUV2BBBUV2BBBUV2CBB TTT ==== ++++++
 

Substituting this back we finally get: 

( ) ( )( )          lim CBBI0AtA Nt +−= +
∞→  

Assuming now that the initial conditions for the problem, A(0) are distributed 
uniformly in NNR × means that ( ) 00A = .  Accordingly, the equilibrium solution 
averaged over all initial conditions is: 

( ) ( )( ) ( ) ( )   C= C+lim ++
∞→ −=+−= BBI0ACBBI0AtA NNt  

Thus we finally get ( ) CtAt =∞→lim  which is the optimal solution with non-

vanishing cost. 

 

 8. Modularity declines if goals become constant: 

What happens to modularity under a constant goal if one begins with a 

modular solution as an initial condition? We find that modularity decays over time 
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(Fig 8b). Generally, this decay corresponds to motion along the low gradient valley 

towards the optimal, non-modular fixed point.  Hence the typical time constant is of 

order 1/ε. In the relatively simple two-dimensional case this can be shown 

analytically. Here the modularity measure Q (see supporting information for 

definition) is 

( )
2

ij
ij2D aDetQ ⎟⎟

⎠

⎞
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⎝

⎛
∝ ∑= A . 

Now, since A converges to the optimal solution A* (which is rank deficient), 
( ) ( ) 0DetDet =→ *AA  in the limit ∞→t , and so 0Q 2D →=  also in this limit. 

Furthermore, QD=2 can be calculated analytically by using the solution to the 

equations of motions as given by eq. (5) and using the fact that the modular initial 

conditions puts the system inside the valley, which means that fast terms in A can be  

neglected (expressions that depends on the large eigenvalue λ).  Substituting into 

QD=2 we get: 
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where *
ija  are the components of the optimal solution, and ijh are constants 

determined by the eigensystem of the problem. Expanding while keeping terms of 

order tE ε− , and using the fact that ( ) 0aaaaADet 21122211 === ***** , we finally get 
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−
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where w1 and w2 are constants. The result is that QD=2 vanishes exponentially slowly 

(~ tE ε− ).

 

Note that since Qm is a linear function of Q (see supporting information), 

these results still hold for Qm.  

The conclusion is that if left alone, the modularity of the system decays slowly 

to the modularity of the optimal solution. Thus, goals need to keep varying over time 

in order to maintain the modular structure.
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