
1

An Analytically Solvable Model for Rapid Evolution of Modular Structure

Supporting Information
N. Kashtan*1, A. E. Mayo*1, T. Kalisky1, U. Alon1,2

1 Dept. of Molecular Cell Biology and 2 Physics of Complex Systems,

Weizmann Institute of Science, Rehovot Israel 76100

 *These authors contributed equally to this work

The Supporting Information is organized as follows:

1. Modularity measure.

2. Analysis with Genetic Algorithms.

3. Speedup calculation.

4. The relation between the block structure of the evolved matrix and the

covariance and correlation within the goal input and output vectors.

5. Calculation of the critical epoch time for speedup.

6. Other cost functions.

7. Solution under the assumption of no cost

8. Modularity declines if goals become constant

1. Modularity measure

 In this section, we define the modularity measure used to quantify the

modularity of the interaction network defined by the matrix A. An NxN matrix A can

be mapped to a 2N-node network. In this mapping, the matrix element A(i,j)

represents the weighted directed interaction between input-node j to output-node

(N+i) (as described in Fig. S1).

 To quantify network modularity we employed the measure based on the

approach of Newman and Girvan [1,2], refined to weighted directed networks.

Briefly, the Newman and Girvan algorithm finds the division of the nodes into

modules that maximizes a measure Q. This measure is defined by the fraction of the

edges in the network that connect between nodes in a module (or ‘community’ as

termed by the authors) minus the expected value of the same quantity in a network

2

with the same assignment of nodes into modules but random connections between the

nodes [3].

Figure S1. The NxN matrix A represents a weighted interaction network with 2N nodes.

 To measure modularity in a directed network where the edges have different

weights we define the Q measure as follows:

(S1) ∑
= ⎥

⎥
⎦

⎤

⎢
⎢
⎣

⎡
−=

K

s

out

s

in

ss

W
dd x

W
wQ

1
2)(

where K is the number of modules, W is the total sum of the interaction weights in the

network, ws is the total sum of the interaction weights between nodes in module s, ds
in

is the sum of the weighted in-degrees of the nodes in module s and ds
out is the sum of

the weighted out-degrees of the nodes in module s. We assume all weights are non-

negative, otherwise absolute values are taken.

We further refined this measure, as described in [4], by normalizing it with

respect to randomized networks, (randomized matrices A of the same dimension N).

This is based on the observation that randomized networks typically do not show

Q=0, due to the fact the even a random network has at least one partitioning of its

nodes that yields a Q value well above zero. To address this, we used a normalized

measure Qm:

(S2) Qm=(Qreal-Qrand)/(Qmax-Qrand)

3

where Qreal is the Q value of the network, Qrand is defined as the average Q value of

randomized networks, and Qmax is defined as the maximal possible Q value of the

network.

 To compute the modularity measure of a network, Qm, we first calculated its

Qreal. To measure Qrand we used 104 random matrices. To estimate Qmax we used an

upper bound Qmax=1-1/K where K is the maximal number of modules, which can be

considered here as N (the dimension of the matrix A).

2. Genetic Algorithm

The main text employed Hill-climbing dynamic to solve the evolution over

time. Here, we describe results using a different evolutionary dynamics, employing a

standard genetic algorithm (GA) [5-7] using the Matlab GA toolbox. In the genetic

algorithm, the genome describes the values of the matrix A. We started with

homogenous population initialized to a random A value with |aij|<1. Mutations were

applied with probability Pm=1 per gene (matrix element) per generation. A mutation

randomly changed elements in A by a shift drawn from the Gaussian 0±0.005

(mean±SD). Population size was 500. Selection was fitness proportional, where the

probability of passing to the next generation was proportional to fitness of each

individual. Evolution time was defined as the number of generations required to reach

distance D(t) < D0 (D0=0.1) from the desired goal (rms distance). We find that using

genetic algorithms, there is a rapid convergence to the modular solution under MVG,

and slow convergence to the optimal but non-modular solution under fixed goals

(Figures S2-S4). Thus, we observe qualitatively similar results to the analytic results

described in the paper.

4

Figure S2. Evolutionary trajectories (using genetic algorithms) under fixed goal. a. A typical

trajectory under fixed goal with G1=[v=(1,1), u=(1,1)] presented on the plane of the two matrix

elements a11 and a22. Black points represent best individual in the population, at a 20 generation

temporal resolution. Empty circle: optimal non-modular solution (0.5,0.5); Full circle: modular solution

(1,0). The cost parameter is ε=0.001.

5

Figure S3. Evolutionary trajectories, using genetic algorithms, under MVG. A typical trajectory

under MVG varying between G1=[v=(1,1), u=(1,1)] and G2=[v=(1,-1), u=(1,-1)] presented on the a11

and a22 plane. Black points represent best individual in the population, at a 20 generation resolution.

Empty circle: optimal non-modular solutions (0.5,0.5) and (0.5,-0.5); Full circle: modular solution

(1,0). Goals switched every E=100 generations. The cost parameter is ε=0.001.

6

Figure S4. Speedup increases with problem difficulty, simulations using genetic algorithms. a.

Time (no. of generations) to converge on the solution as a function of ε. Red dashed-line: under fixed

goal evolution (TFG), black: MVG with different goal switching times (E), increasing in the direction of

the dashed arrow. (E=2,10,20,100). b. The Speedup S as a function of goal switching times (E). Lines

are for different ε values, increasing in the direction of the dashed arrow (ε =

0.01,0.001,0.002,0.0001).c. Speedup as a function of TFG. The speedup scales linearly with TFG (as a

power law S~(TFG)α with an exponent α=1.0±0.1). Lines are for switching times (E=10,50,100),

increasing in the direction of the dashed arrow.

7

3. Speedup Calculation

The speedup (S) is defined as the ratio of the time, starting from random initial

conditions, to reach the solution in a fixed goal problem (TFG) to the time the system

reaches a solution in a modularly varying goal problem (TMVG) :

MVG

FG

T
TS =

Note that the solution in an MVG problem is not a point but rather a limit cycle whose

amplitude depends on the epoch time (E) and on the difficulty of the fixed goals

composing the problem (ε). Accordingly, TMVG was calculated as the time at which

the system reaches its limit cycle. The amplitude of the limit cycle was also used to

determine the threshold for the convergence of the system to its fixed goals (see Fig.

S5).

Figure S5. A schematic view of convergence under fixed goal (green lines) and under modularly

varying goals (blue broken line). The amplitude of limit cycle is a function of epoch time (E) and η.

TFG is defined as the time it takes the system to reach the same distance from the optimal solution.

In case of nearly modularly varying goals, the definition above was modified

to take into account the parameter characterizing the distance between the goals η

(see Fig. S6). The limit cycle of the system was calculated, and the minimal distance

8

between the solution and the corresponding modular solution was found in each

epoch. The threshold for calculation of TFG was then taken as the mean of the two

distances: Rm= Mean(R1,R2).

Figure S6. A schematic view of convergence under fixed goal (green lines) and under nearly

modularly varying goals (blue broken line). The amplitude of limit cycle is a function of epoch time E)

and η.

4. The block structure of the evolved matrix is determined by the correlation

between the goal input and output.

 Here we show the relation between the block structure of the evolved matrix
(A) and the covariance structure of the goal input and output vectors (V and U).
Here we will treat the inputs and outputs as independent random variables
 ()N21 vvvV ,,, K=
 ()N21 uuuU ,,, K=
By definition the goal G is modular if there exists a block diagonal matrix M such that
MV=U (up to permutations of the columns of V and U). In terms of the v’s and u’s
this reads:

 ∑
=

=
N

j
jiji vMu

1
.

Since each variable is sampled k times, the means are:

9

 (S3)

()

() () () j

N

j
ij

k

q
qj

N

j
ij

k

q
qj

N

j
ij

k

q q

N

j
jij

k

q
qii

k

q
qii

vMv
k

MvM
k

vM
k

u
k

u

v
k

v

∑∑∑∑∑∑ ∑∑

∑

==== == ==

=

===⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

=

1111 11 11

1

1111

1

Here we used the linearity of the mean operator. Similarly, the second moments are:
(S4)

() ()

() () () ()

() () () ()

∑∑∑∑∑

∑∑∑∑∑

∑ ∑∑ ∑∑

∑

= ====

==== =

= == ==

=

=⎟
⎠

⎞
⎜
⎝

⎛
===

===

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
==

=

N

n

N

p
npjnipnp

N

n
jn

N

p
ipjp

N

p
ipji

jp

N

p
ipqj

k

q
qp

N

p
ipqj

k

q
qp

N

p
ip

qj

k

q q

N

p
pipqj

k

q q

N

p
pip

k

q
qjqiji

k

q
qjqiji

vvMMvvMMuvMuu

vvMvv
k

MvvM
k

vvM
k

vvM
k

vu
k

vu

vv
k

vv

1 1111

1111 1

1 11 11

1

11

111

1

The covariance matrix of the goals input and output pairs can now be calculated:

(S5) () () ()∑∑
==

=−=−=
N

p
jpipjpjp

N

p
ipjijiji vvCMvvvvMvuvuvuC

11
,,

Note that like M, the covariance matrix is an NxN matrix. Since the v’s are
independent variables, () () pjjjp vvvC δσ 2, = . Substituting this into Eq. (S5), doing the
summation, and solving for Mij we find:

(S6)
()
()2

,

j

ji
ij v

vuC
M

σ
=

Writing the covariance matrix in terms of the correlation matrix
 () () () ()jijiji vuvuvuC σσρ ,, = ,
we get
(S7) () () ()jijiji vMuvu σσρ =, .
This can be further simplified by calculating ()iuσ :

() () () () () ()∑∑∑∑
====

=====
N

p
pip

N

p
pipip

N

p
piip

N

p
ipipiii vMvMMvuCMuvCMuuCu

1

22

1

2

11

2 ,,, σσσ

Substituting this into (S7) we get

(S8) () ()
()∑

=

=
N

p j

p
ipjiij v

v
MvuM

1
2

2
2,

σ
σ

ρ

Without loss of generality we can assume that the inputs are set to have zero mean

and unit standard deviation, namely

(S9) () () 12 == jp vv σσ

Accordingly, if we define

10

(S10)

∑
=

≡
N

p
ip

ij
ij

M

M
M

1

2

~ ,

That is the matrix M normalized so that the norm of the rows is 1, we finally obtain

(S11) ()jiij vuM ,~ ρ= .

Note that the structures of M and that ijM~ are the same. Now based on appendix A (of

the main text) we know that under MVG, the matrix A evolves towards the matrix M.

And so it must evolve towards the structure of the correlation matrix between the

input and output pairs.

5. Calculation of the critical epoch time for speedup.

 In this section, we comment on the range of goal switching times where

speedup can be observed in MVG relative to fixed goal problems. Following Eq. (5)

in the main text, the evolution of the components aij t() of the mapping

aij

* matrix A

within a single epoch can be described by the following equation:

(S12)

aij t()= Kne

−λnt

n

N

∑ + aij
*

Where

aij

* is the optimal solution and the prefactors Kn{ } are determined by the

eigenvectors corresponding to λn{ } and the initial conditions in that particular epoch.

Taking the case of N=2 we can write:

(S13)

r t()= aij t()− aij

* = K1e
− λ1t + K2e

− λ2 t

Where λ1 is the large eigenvalue and λ2 is the small one. The evolution can thus be

decomposed into a fast and a slow component corresponding to the large and small

eigenvalues respectively. Generally, at the beginning of the epoch the first component

decays faster and governs the dynamics. However, at a certain switching rate the first

component will become arbitrarily small and the second slowly decaying component

will be dominant. It is beyond this point that speedup ceases.

11

Formally, for rapid evolution to occur, the rate of the rapid decay must be larger than

the rate of the slow decay in each epoch. Hence:

(S14)

d
dt

K1e
−λ1t()>

d
dt

K2e
−λ2t()

Or:

(S15) λ1K1e
−λ1t > λ2K2e

−λ2t

e λ1 −λ2()t <

λ1K1

λ2K2

t <

1
λ1 − λ2

log
λ1K1

λ2K2

⎛

⎝⎜
⎞

⎠⎟

Thus a general condition for speedup is that the epoch time will be less than some a

epoch time:

 (S16)

Ec =

1
λ1 − λ2

log F λ1,λ2 , K1, K2()()

Where

F () is a function of the initial conditions (and the eigenvalues) upon which

 Tc depends weakly.

For epoch times obeying T < Tc the dynamics is governed by the rapid decay

component only (see Fig. S4 b). Hence, as long as T < Tc the evolution time is

essentially the same. However, if the epoch time increases beyond Tc the added time

will be spent along the slow component, and total evolution time will increase with

the added time being linearly proportional toT − Tc .

6. Other cost functions

12

 As mentioned in the main text, one can test various cost functions (the benefit

function is maintained as the Frobenius norm since we measure the Euclidian distance

from the goal). The cost function we presented in the main text has the advantage of a

fully solvable linear dynamics. To study the dynamics governed by other cost we used

two different methods: numerical analysis and simulations using genetic algorithms.

We find qualitatively similar results and dynamics to those found in the main text,

under a wide range of convex cost functions. Concave cost functions can lead to

scenarios in which the modular solution is in fact the optimal solution (either local or

global). Thus it can be found in FG problems as well as in MVG problems. However,

it is not guaranteed that the system will actually reach the modular solution since it

may be flanked by other local optima. This is avoided in MVG problems. The non-

convex cost |a| is of special interest since it is characterized by a true fitness plateau.

To study a broader range of cost functions, we examined a family of cost functions

such as:

(S17) ∑
+

=
ij n

ij
n

n

ij

aK

a
c ε

where n > 0 and 1≅K . For n>1 these cost functions are convex (concave) for

ijaK > (ijaK <), and strictly concave for 0 < n < 1.

Specifically, in the limit ijaK >> the cost function (S17) reduces to

∑−=
ij

n

ij
n aKc ε which upon the redefinition nKεε → and n=2 becomes the cost

function of the main text. Now, although the dynamic is affected by the new cost

function, the result that in a MVG problem the obtained solution is the modular one

still remains. Here we show this analytically in a 2D case by calculating the equations

of motion described by the modified fitness function, and looking for the equilibrium

points.

In the simple 2D FG problem we get for the first row of the matrix A

() ()2
1112121111

n
12

n
11 uavavaaF −+−+−= ε

.

Assuming that the system is allowed to reach the low gradient ridge, and is now

constrained to move along it (that is the benefit is maximal) the matrix elements are

related by:

 0uavav 1112121111 =−+ .

Solvi

along

Diffe

From

put

vu11

Note

all n

for n

a loca

soluti

a11 =

the m

for co

a MV

can s

minim

lands

7. So

cost.

ing for a12, a

g the ridge:

(S18)

erentiating F

(S19)

m this it follo

it differen

0av 1111 <<)

(S20)

that if u11 =

1. Calcula

> 1 (convex

al maximum

ion can be fo

0=

and one

modular solu

oncave cost

VG problem.

In the spe

till be found

mum is obta

scape has a tr

lution unde

Here we
We begin w

and substitut

⎜
⎜

⎝

⎛
−= 11aF ε

with respec

(aSign

ows that the

ntly, depen

). Thus up to

v
ua11 =

vv 1211 ===

ating the sec

x cost functio

m flanked by

ound: for 12v

global (loca

ution (11 vu =

functions, m

ecial case of

d. It is obtain

ained at any

rue fitness p

er the assum

will derive
with the gene

ing back int

+
11

11

n

12

11n

v
u

v
v

t to a11 we c

) 1n
1111 aa − =

e solution m

ding on t

o corrections

(vv
1

v
u

n
121111

11

1 , we recov

cond derivat

on). For 0 <

two minima

112 v< (12v >

al) maximum

11v) is in fac

modularity c

f n=1, F is n

ned at 11a =

point in the

plateau.

mption of no

the solution
eral solution

13

o F we get u

⎟
⎟

⎠

⎞
−

n

11a
.

an find the e

11

11 a
v
uSign⎜⎜

⎝

⎛
−

must obey Sig

the sign

s of ()εO , th

() 1n1 +− .

ver the solut

tive shows t

< n < 1 (conc

a. F is not di

11v>) we hav

m at
1

1
11 v

ua =

ct a maximu

an be obtain

not different

11

11

v
u for 12v ≠

e closed sect

o cost

n of a FG pr
(B6) in the l

up to correct

equation for

11

11

n

12

11
11 v

u
v
va ⎟⎟

⎠

⎞

()11 Sigagn =

of 1111 vu

he only solut

tion of the m

that solution

cave cost fun

fferentiable

ve one local

11

11 . This mea

um (either lo

ned in a FG

tiable. Never

11v≠ . Interes

tion [111 vu0,

roblem assu
limit of ε=0:

ion of (2O ε

the equilibri
1n

11a
−

−
.

(1111 avugn −

, 11a0 <<

tion is

main text: a1

n (S20) is a

nction) this s

there nevert

l (global) ma

ans that for

ocal or glob

problem as

rtheless the

stingly, if 12v

]11 . That is t

uming that th

) , the cost

ium:

)11a (or to

1111 vu or

11=1/2 for

minimum

solution is

theless the

aximum at

0 < n < 1

bal). Thus,

well as in

minimum

112 v= the

the fitness

here is no

14

() ()()

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=Λ

Λ===

−+=

−

−

−Λ−

k1

kN

1TT

1t

00diagonal

WBWBUV2CVV2B
WWeC0ACtA

λλ K321K ,,,,

,

Accordingly in the steady state solution

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎯⎯ →⎯⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
= −∞→−−

−

Λ−

00
0I

ee11diagonale kNttt

kN

t k1 λλ K321K ,,,,

Where IN-k is the N-k dimensional identity matrix.

() ()()

()()

()

lim

1

k

1

k
N

1

k
N

1kN
t

W
I0
00

CWW
I0
00

WI0A

W
I0
00

IWC0AC

W
00
0I

WC0ACtA

−−

−

−−
→∞

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−+=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

In order to proceed we make use of the fact that +ΛΛ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

kI0
00

 :

() ()() ()() ++−−−+−−+− =ΛΛ=ΛΛ=ΛΛ=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
BBWWWWWWWWWWW

I0
00

W 111111

k

Using the definition of C we obtain:

() () CBUV2BBBUV2BBBUV2CBB TTT ==== ++++++

Substituting this back we finally get:

() ()() lim CBBI0AtA Nt +−= +
∞→

Assuming now that the initial conditions for the problem, A(0) are distributed
uniformly in NNR × means that () 00A = . Accordingly, the equilibrium solution
averaged over all initial conditions is:

() ()() () () C= C+lim ++
∞→ −=+−= BBI0ACBBI0AtA NNt

Thus we finally get () CtAt =∞→lim which is the optimal solution with non-

vanishing cost.

 8. Modularity declines if goals become constant:

What happens to modularity under a constant goal if one begins with a

modular solution as an initial condition? We find that modularity decays over time

15

(Fig 8b). Generally, this decay corresponds to motion along the low gradient valley

towards the optimal, non-modular fixed point. Hence the typical time constant is of

order 1/ε. In the relatively simple two-dimensional case this can be shown

analytically. Here the modularity measure Q (see supporting information for

definition) is

()
2

ij
ij2D aDetQ ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∝ ∑= A .

Now, since A converges to the optimal solution A* (which is rank deficient),
() () 0DetDet =→ *AA in the limit ∞→t , and so 0Q 2D →= also in this limit.

Furthermore, QD=2 can be calculated analytically by using the solution to the

equations of motions as given by eq. (5) and using the fact that the modular initial

conditions puts the system inside the valley, which means that fast terms in A can be

neglected (expressions that depends on the large eigenvalue λ). Substituting into

QD=2 we get:

()() ()()
() ()t

2t
ijij

t
2121

t
1212

t
2222

t
1111

2D EO
Eha

EhaEhaEhaEha
Q λ

ε

εεεε
−

−

−−−−

= +
+

++−++
∝

∑ *

where *
ija are the components of the optimal solution, and ijh are constants

determined by the eigensystem of the problem. Expanding while keeping terms of

order tE ε− , and using the fact that () 0aaaaADet 21122211 === ***** , we finally get

() ()t
2

t
12

ij
t

ij

2211
2D Ew1Ew1

hEa

aa
Q εε

ε

−−

−
= −−+

+
∝

∑ *

**

.

where w1 and w2 are constants. The result is that QD=2 vanishes exponentially slowly

(~ tE ε−).

Note that since Qm is a linear function of Q (see supporting information),

these results still hold for Qm.

The conclusion is that if left alone, the modularity of the system decays slowly

to the modularity of the optimal solution. Thus, goals need to keep varying over time

in order to maintain the modular structure.

16

References

1. Newman MEJ, Girvan M (2004) Finding and evaluating community structure in
networks. Phys Rev E 69: 026113.
2. Newman MEJ (2004) Fast algorithm for detecting community structure in
networks. Phys Rev E 69: 066133.
3. Guimera R, Nunes Amaral LA (2005) Functional cartography of complex
metabolic networks. Nature 433: 895-900.
4. Kashtan N, Alon U (2005) Spontaneous evolution of modularity and network
motifs. Proc Natl Acad Sci U S A 102: 13773-13778.
5. Goldberg D (1989) Genetic Algorithms in Search, Optimization, and Machine
Learning: Addison-Wesley Publishing Company, Inc.
6. Holland J (1975) Adaptation in natural and artificial systems: The University of
Michigan Press.
7. Mitchell M (1996) An Introduction to Genetic Algorithms. Cambridge MA: MIT
Press.

