The dynamics of T-cell receptor repertoire diversity following thymus transplantation for DiGeorge Anomaly- Text S1

Stanca M. Ciupe ${ }^{\star}$, Blythe H. Devlin ${ }^{\dagger}$, M. Louise Markert ${ }^{\dagger}{ }^{\dagger \ddagger}$, Thomas B. Kepler ${ }^{\star, \ddagger}$

Because the number of lineages is large and because we study the long-term average behavior of x_{i} we can replace the stochastic terms by their expectation per unit time to study the average or steady-state behavior. At steady-state, all clones have the same size. Indeed, if we consider that thymic emigration has attained its maximal value $\epsilon_{M}=\epsilon / \tau^{\eta}$, we can derive the steady state solution for a family x_{i} to be

$$
\begin{equation*}
\bar{x}_{i}=\frac{\gamma-\frac{\gamma(1-\rho)}{\kappa} \bar{T}+\sqrt{\left(\gamma-\frac{\gamma(1-\rho)}{\kappa} \bar{T}\right)^{2}+4 \epsilon_{M} \frac{n \gamma \rho}{\kappa}}}{2 \frac{n \gamma \rho}{\kappa}}, \tag{1}
\end{equation*}
$$

which is independent of specificities i. Therefore at equilibrium all clone sizes are identical and equal to $\bar{x}_{i}=\bar{T} / n$. The total number of T cells satisfies the equation

$$
\begin{equation*}
n \epsilon_{M}+\gamma \bar{T}-\frac{\gamma}{\kappa} \bar{T}^{2}=0 . \tag{2}
\end{equation*}
$$

Moreover, if the thymic contribution to the peripheral pool is negligible at steady state, $\epsilon_{M} \ll \gamma \bar{T}$, the total number of T cells at equilibrium is

$$
\begin{equation*}
\bar{T}=\kappa \tag{3}
\end{equation*}
$$

We can show that the steady state $(\bar{T} / n, \bar{T} / n, \ldots, \bar{T} / n)$ is asymptotically stable. We linearize Eqs. $(1,4)$ about the steady state (1) to get

$$
\begin{align*}
A & =\left(\begin{array}{cclc}
\gamma-\gamma \frac{(2 n-1) \rho+1}{\kappa} \bar{x}_{1}-\frac{\gamma(1-\rho)}{\kappa} \bar{T} & -\frac{\gamma(1-\rho)}{\kappa} \bar{x}_{2} & \ldots & -\frac{\gamma(1-\rho)}{\kappa} \bar{x}_{n} \\
-\frac{\gamma(1-\rho)}{\kappa} \bar{x}_{1} & \gamma-\gamma \frac{(2 n-1) \rho+1}{\kappa} \bar{x}_{2}-\frac{\gamma(1-\rho)}{\kappa} \bar{T} & \ldots & -\frac{\gamma(1-\rho)}{\kappa} \bar{x}_{n} \\
\ldots & \ldots & \ldots & \ldots \\
-\frac{\gamma(1-\rho)}{\kappa} \bar{x}_{1} & -\frac{\gamma(1-\rho)}{\kappa} \bar{x}_{2} & \ldots & \gamma-\gamma \frac{(2 n-1) \rho+1}{\kappa} \bar{x}_{n}-\frac{\gamma(1-\rho)}{\kappa} \bar{T}
\end{array}\right) \\
& =\left(\begin{array}{cccc}
\gamma-\gamma \frac{(2 n-1) \rho+1}{\kappa} \frac{\bar{T}}{n}-\frac{\gamma(1-\rho)}{\kappa} \bar{T} & -\frac{\gamma(1-\rho)}{\kappa} \bar{T} \\
-\frac{\gamma(1-\rho)}{\kappa} \frac{\bar{T}}{n} & \gamma-\gamma \frac{(2 n-1) \rho+1}{\kappa} \frac{\bar{T}}{n}-\frac{\gamma(1-\rho)}{\kappa} \bar{T} & \ldots & -\frac{\gamma(1-\rho)}{\kappa} \bar{T} \\
\ldots & \ldots & -\frac{\gamma(1-\rho)}{\kappa} \frac{\bar{T}}{n} \\
-\frac{\gamma(1-\rho)}{\kappa} \frac{\bar{T}}{n} & -\frac{\gamma(1-\rho)}{\kappa} \frac{\bar{T}}{n} & \ldots & \ldots \\
& \ldots & \gamma-\gamma \frac{(2 n-1) \rho+1}{\kappa} \frac{\bar{T}}{n}-\frac{\gamma(1-\rho)}{\kappa} \bar{T}
\end{array}\right) \tag{4}
\end{align*}
$$

The characteristic equation for the linearized system is

$$
\begin{equation*}
\left(\gamma-\frac{2 \gamma}{\kappa} \bar{T}-\Lambda\right)\left(\gamma-\frac{\gamma(1+\rho)}{\kappa} \bar{T}-\Lambda\right)^{n-1}=0 . \tag{5}
\end{equation*}
$$

From equation (2) we have that $\gamma-\frac{\gamma}{\kappa} \bar{T}=-n \epsilon_{M} / \bar{T}$. We can conclude that all eigenvalues of (5),

$$
\begin{align*}
\Lambda_{1} & =-\frac{\gamma}{\kappa} \bar{T}-\frac{n \epsilon_{M}}{\bar{T}}, \\
\Lambda_{2,3 \ldots n} & =-\frac{\gamma \rho}{\kappa} \bar{T}-\frac{n \epsilon_{M}}{\bar{T}}, \tag{6}
\end{align*}
$$

are negative, therefore the steady state $(\bar{T} / n, \bar{T} / n, \ldots, \bar{T} / n)$ is asymptotically stable.

