Table S3
 Prediction performances on different designed negatives

¹ dataset type	2 sensitivity(%)	³ precision (%)	⁴ accuracy (%)	⁵ AUC	⁶ MCC
min	94.51	96.69	99.42	0.9916	0.9521
mlt	88.68	96.42	99.04	0.9941	0.9189
mle	89.08	96.01	99.04	0.9948	0.9192
max	80.47	88.05	97.99	0.9831	0.8329

¹: refers to negative data expansion rules described in Sec. 1.3 in Supplementary Materials. 10 subpos first-layer SVM models were utilized to produce the two-layer SVM model from datasets with 24,500 negatives.

²: sensitivity = TP/(TP + FN).

³: precision = TP/(TP + FP).

⁴: accuracy = (TP + TN)/(TP + FN + TN + FP).

5: area under the ROC curve. 6: $(TP \times TN - FP \times FN)/\sqrt{(TP + FN) \times (TN + FP) \times (TP + FP) \times (TN + FN)}$.

(TP: a number of known positives predicted as positive. FP: a number of negatives predicted as positive. FN: anumber of known positives predicted as negative. TN: a number of negatives predicted as negative.)