	¹ Internal 10-fold cross-validation			¹ External prediction		
² Model type	3 prec.(%)	4 sens.(%)	${}^{5}acc.(\%)$	$\operatorname{prec.}(\%)$	sens.(%)	$\operatorname{acc.}(\%)$
(A) Effect of rational negative design						
one-layer	71.76	42.99	95.11	64.66	50.59	95.00
$one-layer_r$	$82.38(\pm 0.64)$	$38.22(\pm 0.95)$	$95.38(\pm 0.06)$	$40.68(\pm 1.19)$	$50.00(\pm 1.87)$	$92.02(\pm 0.28)$
(B) Effect of second-layer SVM model						
subpos	97.11	92.57	99.33	82.81	31.18	95.11
$subpos_r$	$94.40(\pm 0.67)$	$96.46(\pm 1.00)$	$99.39(\pm 0.11)$	$42.5(\pm 2.71)$	$33.53(\pm 3.90)$	$92.74(\pm 0.41)$
$subpos_{v_0,5}$	-	—	-	8.89	57.06	59.27
$subpos_{v_0,8}$	—	_	-	28.13	5.29	92.98
$subpos_{m_{0.5}}$	—	_	-	9.52	58.24	61.37
$subpos_{m_0,8}$	-	-	-	17.86	2.94	92.82
$subpos_{ann}$	95.98	93.21	99.29	75.81	27.65	94.73
$subpos_{qda}$	70.69	54.39	95.49	34.52	17.06	92.52
$subpos_{f}$	$95.66(\pm 0.32)$	$78.33(\pm 1.60)$	$98.33(\pm 0.10)$	$78.76(\pm 2.86)$	$25.59(\pm 1.09)$	$94.71(\pm 0.09)$
(C) Improvement of provision						
(C) improvemen		100.00	00.00	100.00	10 50	04.00
aupos	99.68	100.00	99.98	100.00	10.59	94.20
$subpos_{\lfloor 0.9 \rfloor}$	-	-	-	90.70	22.94	94.85
$subpos_{\lfloor 0.95 \rfloor}$	-	-	-	92.50	21.76	94.81
one-layer _{0.9}	-	-	-	86.67	15.29	94.35
one layer 0.95	_	_	_	71.43	2.941	93.63

Table S4 $\,$ Evaluation of our prediction method on an external test set

¹: The external dataset consisted of 170 positives and 2,450 negatives that were randomly chosen from 1,731 positives and 24,500 designed negatives with the *mlt* rule described in Sec. 1.3 in Supplementary Materials and that were excluded in constructing first-layer and second-layer SVM models. Here, "one layer" SVM model was produced based on the same features as used for the first-layer SVM model. The internal dataset utilized 1,561 positives and 22,050 negatives. ²: "Model type" exhibits that the one-layer SVM model or the second-layer SVM model, specified by the type of first-layer SVM model, was utilized. Subscripts mean as follows.

- $_r$ means that three types of randomly chosen 22,050 pairs of protein and chemical compound were used instead of designed negatives to construct the SVM model. The 95% confidence intervals are shown.
- v_t means that voting with 11 first-layer SVM models with threshold t was used for prediction.

$$pred_{\mathbf{v}_t} = \begin{cases} \text{pos.} & \text{if } \sum_{i=1}^{11} r_i \ge 6\\ \text{neg.} & \text{otherwise} \end{cases}, \ r_i = \begin{cases} 1 & \text{if (probability output of model } i) \ge t\\ 0 & \text{otherwise} \end{cases}$$

• m_t means that average of outputs of 11 first-layer SVM models was used for prediction with threshold t.

$$pred_{\mathbf{m}_{t}} = \begin{cases} \text{pos.} & \text{if } \sum_{i=1}^{11} \frac{(\text{probability output of model } i)}{11} \ge t \\ \text{neg.} & \text{otherwise} \end{cases}$$

- ann means that Artificial Neural Network (ann) (implemented by the statistical software package R (http://cran.r-project.org/) function *nnet* (Venables and Ripley, 2002)) was applied to outputs of 11 first-layer SVM models. Parameters were selected to give the best accuracy in the internal 10-fold cross validation. For example, 17 units were used in the hidden layer.
- qda means that Quadratic Discriminant Analysis (qda) (implemented by R function qda (Venables and Ripley, 2002)) was applied to outputs of 11 first-layer SVM models.
- $_f$ means that twenty types of randomly chosen 11 first-layer SVM models were used to construct the second-layer SVM model. The 95% confidence intervals are shown.
- |t| (e.g. t = 0.9) means that final probability outputs were evaluated with threshold t.
- ³: precision (prec.) = TP/(TP + FP).
- ⁴: sensitivity (sens.) = TP/(TP + FN).
- ⁵: accuracy (acc.) = (TP + TN)/(TP + FN + TN + FP).

(TP: a number of known positives predicted as positive. FP: a number of negatives predicted as positive. FN: a number of known positives predicted as negative. TN: a number of negatives predicted as negative.)

References

W. N. Venables and B. D. Ripley. *Modern Applied Statistics with S.* Springer, New York, fourth edition, 2002. URL http://www.stats.ox.ac.uk/pub/MASS4. ISBN 0-387-95457-0.