Checking Markovity

Although the purpose of the work introduced in the manuscript was to illustrate a way to handle the
Conformational Markov Network (CMN) in order to obtain the basins of attraction and characterize
the Free Energy Landscape, the lector must be advise about the necessity of checking the markovian
character of the model (network in our case).

With regard to the CMNs that appear in the manuscript:

(1) The particle in the funnel like potential is simulated using an overdamped dynamics. In this
case, the continuous trajectory integrated is inherently Markovian [1,2]. When we discretize the co-
ordinate space to lump the trajectory into micro-states, the Markovity of the new description can be
defied [3,4]. Therefore, one has to care about the time step to describe the process since it must be
larger than the longest equilibration time among the micro-states [5]. In ref. [6] three approaches are
mentioned to evaluate the degree of Markovity of a stochastic model. Among these approaches, we have
taken the criterion presented by Park and Pande in [7] based on Shannon’s entropy. This method pro-
vides a unique magnitude not as sensitive to statistical and numerical noise as other methods. Another
reason to make this choice is that a necessary and sufficient condition for Markovity is checked (while
the observation of the eigenvalues of the transition matrix is not a sufficient condition). The analysis
is based on the comparison of a first-order conditional entropy H,(X,|X,—1) and the second-order one
H-(Xp|Xn-1,Xn—2) (see [7] for further details and notation). The magnitude R, quantifies, given X,,_1,
what fraction of the information in X, is the mutual information between X, and X, _5. Although the
method is computationally expensive, our models are small enough to carry out this analysis. The Figure
S1 reveals that with the lag time used in our analysis (7 = 1) the memory effect (non-Markovity) is less
than a 5%.
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Figure S1. Checking Markovity: The relative mutual information R, quantifies the degree of
non-Markovity of our stochastic model. The lag time used to construct the CMN -funnel like potential-,
7 = 1, reveals a memory effect lower than a 5%.



We have to remark, as it is discussed in ref. [7], that there’s probably no answer to the question: when
does the model behaves Markovian? However the appropriate question should be: Given an observable,
what is the degree of Markovity needed to have a correct measure? Regarding to our work, note that
the analysis of the basins detection depends on the detailed balance condition, but not on the relaxation
times. On the other hand, a small deviation such as the 5%, only affects at the analysis of the temporal
hierarchy of basins, where Chapman-Kolmogorov is used explicitly. In order to distinguish whether the
error is propagated (and increased) or not when the transition matrix is raised to the power of n, we
compute the Kullback-Leibler divergence between the transition matrix S(7)" and the matrix computed

from the trajectory S(nt):

S(nt)ij

Dgr(S(nm)||S(T)") = Z S(n7)i; P;In (73”

~ [S(T)™]i
The Figure S2 reveals that the error in the transitions computed with Chapman-Kolmogorov are
far from the experimental values during a short range of n7 close to the original lag time, but the
divergence decrease with time after few steps. In the limit n — oo, the matrix obtained must be equal
to the experimental one (having the stationary probability distribution in each column of the transition

matrix).
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Figure S2. The Kullback-Leibler divergence between the ”experimental” transition matrix S(n7) and
S(7)™ decreases after few time steps (7).

(ii) The alanine dipeptide is simulated with the Langevin formalism (see details in the manuscript
and in the Text S3). The continuum trajectory in the space of coordinates and momenta is also inherently
Markovian [1,2]. On the other hand, we are integrating momenta and discretizing the coordinates space
in our description, which can result in a non-Markovian chain depending on the time step used. In our
case the same analysis applied before provides a value of 0.8% of memory effect.



References

1.
2.
3.

van Kampen NG (1998) Remarks on non-Markov processes. Braz J Phys 28: 90-96.
Zwanzig R (2001) Nonequilibrium Statistical Mechanics. Oxford University Press, USA, 222 pp.

Huisinga W, Schiitte C, Stuart AM (2003) Extracting macroscopic stochastic dynamics: Model
problems. Commun Pure Appl Math 56: 234-269.

Jernigan RW, Baran RH (2003) Testing lumpability in Markov chains. Statist Probab Lett 64:
17-23.

. Swope WC, Pitera JW, Suits F (2004) Describing protein folding kinetics by molecular dynamics

simulations. 1. theory. J Phys Chem B 108: 6571-6581.

Chodera JD, Singhal N, Pande VS, Dill KA, Swope WC (2007) Automatic discovery of metastable
states for the construction of markov models of macromolecular conformational dynamics. J Chem
Phys 126: 155101-1-155101-17.

Park S, Pande VS (2006) Validation of Markov state models using Shannon’s entropy. J Chem Phys
124: 054118-1-054118-5.



