
Comparing with other community algorithms

As it was introduced in the paper, one may be tempted to apply standard algorithms for community
detection in complex networks to the problem of unveiling the topology of free energy landscapes. Several
authors have made use of current community detection tools [1–6] with diverse degree of success. However,
there is no clear conclusion about what method is the most suitable for the problem [7]. Here we sketch
the results obtained using two different approaches [5, 8] to the community detection that have already
been used in previous related works. These results show that our method outperforms any of the proposed
algorithms both in the computational complexity and the success in relating the CMN structure to the
FEL.

Maximization of Modularity

A number of community detection algorithms have been introduced in the last years making use of the
idea of modularity [4, 6]. The idea is to find a network partition into disconnected clusters so that a
given function, the modularity of the network partition, is maximal. The modularity of a given partition
accounts for the probability of having edges connecting nodes belonging to the same cluster in the network
minus the expected probability in a randomized version of the network (having the same number of nodes
and edges and preserving the strength of the nodes). Therefore, modularity provide a way to quantify
the quality of a given network partition, i.e. the larger the modularity the better the partitioning is.

The modularity, Q, for weighted and directed networks has been introduced in ref. [8,9] and, applied
to our CMN, it takes the following form:

Q =
∑

ij

[PiPji − PiPj ]δ(ci, cj) (1)

where the function δ(x, y) is the Kronecker delta function that takes value 1 if x = y and 0 otherwise.
The label ci accounts for the community where node i is assigned in the network partition.

A number of optimization algorithms have been used to look for maximal modularity partitions.
We have chosen the spectral decomposition introduced in ref. [8] and a deterministic greedy search
algorithm [10,11] to compare with the results obtained for the funnel-like CMN using the SSD algorithm.
With these two methods we have obtained two optimal partitions of the CMN having Qmax = 0.54 and
Qmax = 0.53 respectively. On the other hand, the modularity value for the basins detected by SSD only
reaches a value Q = 0.116. This would seem a bad test for the SSD, however, as it is also shown in ref. [7],
the community structure obtained by modularity-based methods is far from the basins shown in Figure
1C of main text. The most approximated decomposition is obtained by the greedy search algorithm
where 11 communities were detected. In this case the most populated basin detected for the funnel-like
potential, the basin called a in Figure 1C of main text, was split in 5 different communities.

This check was not so unwise if one observes that Q is related with the relaxation times of a stochastic
Markov chain represented by the matrix S in the article:

Q =
∑

α

∑

k 6=1

(τk + 1)
(

∑

i∈α

ξk
i

)2

, (2)

where α is the community index, i is the node index, and τk and ~ξk are the eigenvalues -relaxation
times- and eigenvectors -relaxation modes- of the stochastic matrix M = S − 1.

Despite of the possible interpretation of communities based on modularity in CMNs, the Q value
obtained for the SSD basins is quite farway from being the maximum.
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Markov Clustering algorithm

Alternatively to the use of modularity optimization approaches, a second type of algorithms based on
random walks has been introduced to infer the structure of complex networks. The most interesting
algorithm of this type is the Markov Clustering (MCL) approach [5] since it has been proved to be
the best suited method for detecting basins in CMNs [7]. MCL starts with the stochastic matrix S

and iteratively alternates sequences of two matrix operations (namely expansion and inflation) until
the convergence to an invariant matrix (from which network partition is finally obtained) is achieved.
Expansion and inflation transformations correspond to matrix squaring and matrix Hadamard p-power
respectively. These two operations are followed to a normalization step to assure that the resulting matrix
is stochastic at the end of each iteration. The detected network partition depends crucially on the choice
of the parameter p ≥ 1, often called granularity. For its minimum value p = 1 only one community is
detected, the whole network. Therefore, the success on finding the right network community structure is
achieved by a fine tuning of p.

Figure S3. Markov Clustering algorithm applied to the funnel-like potential. The figure shows the
number of network clusters found by MCL as a function of the granularity parameter p. As it is shown
there is a range of granularity values for which MCL is able to detect the same number of clusters as
the SSD algorithm.

We have performed the MCL algorithm over the CMN of the funnel-like network, see Figure S3.
Unlike modularity-based algorithms, the MCL analysis points out that the network is divided into six
communities (basins) for a small range of p, 1.28 ≤ p ≥ 1.35 (1.5 ≤ p < 2.0 is recommended in the
literature), in agreement with the partition found using the SSD algorithm (see Table S1). However, the
non-deterministic character of the method would tempt, if we do not have prior knowledge about the
structure of the FEL, to evaluate the quality of the partitions by computing their modularity. This would
lead us to a CMN partition in disagreement with the number of basins present in the FEL. Therefore,
the free parameter p makes this algorithm unsuitable for analyzing general CMNs since one should have
enough prior knowledge about the system to distinguish the best p value.

Finally, let us remark that both modularity optimization and MCL are computationally far more
complex than the SSD algorithm. In particular, the modularity optimization scales as O(N3) for the
spectral decomposition and as O(mN) when greedy algorithm is implemented. On the other hand,
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Table S1. MCL modules compared with SSD basins. The number of nodes of SSD basins are
compared with those of the MCL modules (p = 1.3) for the funnel-like potential.

S
S
D

B
as

in
s

MCL Modules

1 2 3 4 5 6

a 56 3

b 29

c 54

d 24

e 1 49

f 25

MCL has a time complexity O(N3). To our knowledge the unique community detection algorithm that
scales linearly in time (specifically as O(L + N)) (with L being the number of links in the network)
was proposed in ref. [12]. However, this latter method assumes a prior knowledge of the number of
network clusters and, moreover, these cluster have to be of equal size. As a conclusion, the comparison
between SSD algorithm and standard community detection [13] methods yields a positive assessment on
the convenience of using SSD based both on its better performance and linear time complexity. This
makes the use of the “Stochastic steepest descent” technique the most appropriate method for analyzing
molecular dynamics data from systems of many degrees of freedom such as proteins.
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