
1

Supplementary Material - Optimal Control Predicts Human
Performance on Objects with Internal Degrees of Freedom

Arne J. Nagengast1,2,∗, Daniel A. Braun1,3, Daniel M. Wolpert1

1 Computational and Biological Learning Lab, Department of Engineering, University of

Cambridge, Cambridge CB2 1PZ, United Kingdom.

2 Department of Experimental Psychology, University of Cambridge, Cambridge CB2

3EB, United Kingdom.

3 Bernstein Center for Computational Neuroscience, Albert-Ludwigs Universität

Freiburg, 79104 Freiburg, Germany.

∗ E-mail: an261@cam.ac.uk

Optimal Control Models

Here, we provide details about the state update equations used in the two optimal control models. Let K
be the spring constant matrix, B be the viscosity matrix and M be the mass matrix of the mass-spring-
damper:

K =

[

k11 k12

k21 k22

]

, B =

[

b11 b12

b21 b22

]

, M =

[

m11 m12

m21 m22

]

.

Linear, point-mass optimal control model

Let mh be the mass of the hand, τ1 and τ2 be the time constants of the second order linear muscle filter,
which then yields the state space equation:

~̇x(t) = A~x(t) + B~u(t)

with the matrices

A =
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where the variables in the A matrix correspond to:

Akx
= −

m22×k11−m12×k21

|M| Abx
= −

m22×b12−m12×b22
|M|

Akxy
= −

m22×k12−m12×k22

|M| Abxy
= −

m22×b12−m12×b22
|M|

Akyx
= −

m11×k21−m21×k11

|M| Abyx
= −

m11×b21−m21×b11
|M|

Aky
= −

m11×k22−m21×k12

|M| Aby
= −

m11×b22−m21×b12
|M| .

For computational reasons the problem needs to be discretized and the discretization was performed
using a matrix exponential with time step t = 0.01s.

Non-linear, two-link arm optimal control model

The algorithm developed by Todorov & Li (2005) [1] was used, which is available from
http://www.cs.washington.edu/homes/todorov/, was used. Their dynamics model of the arm was left
unchanged and the following state update matrix for the object was added to the existing code:

A =
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LQR with incomplete state observation and sensorimotor delay

To investigate possible effects of a sensorimotor delay on the simulation results, we adapted the linear
optimal control model above in accordance with [2]. This was done by changing the model from one of
complete state observation to one of incomplete state observation:

y(t) = Hx(t) + ω(t).

where H is the observation matrix and ω(t) is a sensory noise term with mean 0 and covariance matrix
Ωω. This formulation already implies a time delay of one time step. A sensorimotor delay of a total
of 10 time steps (i.e. 100 ms, which is roughly the time to respond to a visual perturbation [3–5]) was
implemented using the augmented state:

x̃(t) =
[

x(t), Hx(t − 9), Hx(t − 8), . . . , Hx(t − 1)
]

.

An augmented observation matrix H̃ extracts the component Hx(t − 9) of x̃(t)

H̃ =
[

014×14, I14×14, 014×14, . . . , 014×14

]
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and an augmented dynamics matrix Ã removes Hx(t − 9), shifts the remaining sensory readings, and
includes Hx(t) in the next state x̃(t + 1)

Ã =
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The sensory noise terms were set to 0 except for the hand and object position and the hand and object
velocity which were set to 0.01 m and to 0.1 ms−1 respectively. All other parameter settings were kept
the same as in the model without delay. The results of the simulations are displayed in Figure S1. The
model predictions for the delayed linear optimal controller are quantitatively only slightly better (i.e.
explain 1%-5% more of the variance than the non-delayed version of the model) but are qualitatively
very much the same. This is due to the fact that there are no unanticipated perturbations in our task
and that the trials we analyse are at the end of learning when subjects already have a very good idea
of the dynamics of the objects. Therefore subjects are likely to have used mostly feed-forward control
rather than correcting online using the visual- and haptic feedback provided by the virtual reality setup.

Sensitivity Analysis

To analyse how sensitive both optimal control models are to the particular values of we and wo chosen
for the fits in the main article, we performed a sensitivity analysis on the data for condition B-low.

Dependency of R
2 on the parameters wv, we and wo (Figure S8)

We changed all three parameters from between one tenth to ten times of their initial fitted values and
computed R2 values for all the different settings. Both models (Figure S8A) are very robust to increases in
wv and wo or decreases in we, which do not affect the model predictions in the range of values investigated.
In contrast, increases in we worsen the fits slightly as the controller becomes greedier and the hand moves
more directly towards the target. Similarly, decreasing wo down to one tenth of its initial value reduces
the goodness of fit only slightly as the hand path becomes straighter and the object starts missing the
target. Decreases of wv again worsen the fits slightly as the hand path becomes more curved and looses
its loop mid-way (see below for more details).

Effect of we on model predictions (Figure S9)

To provide an intuition of how the hand path depends on we, the object weight wo and the velocity
weight wv were held constant and set to the value used in the paper (linear model: wo = 0.05, wv = 0.1;
non-linear model: wo = 10, wv = 0.1). we was varied across ten orders of magnitude (linear model:
from 10−2 to 10−12 - original fit: we = 10−8; non-linear model: from 2 × 103 to 2 × 10−7 - original fit:
we = 2 × 10−3).
For larger values of we both controllers become greedier and the hand path looses its loop and becomes
straighter. Eventually the hand does not even reach the target anymore as the effort term in the cost
function becomes more important than the positional and accuracy component. Reducing the effort
requirement did not result in any significant changes over the range of values investigated.
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Effect of wo on model predictions (Figure S10 and S11)

The effort weight we and the velocity weight wv were held constant and set to the value of the original fit
(linear model: we = 10−8, wv = 0.1; non-linear model: we = 2 × 10−3, wv = 0.1). wo was varied across
six orders of magnitude (linear model: from 5 × 10−5 to 5 - original fit: wo = 0.05; non-linear model:
from 0.01 to 1000 - original fit: wo = 10).
Results of the simulations for the linear model are depicted in Figure S10 and for the non-linear model
in Figure S11. When the object weight wo gets smaller, the hand path becomes straighter and the object
starts missing the target. Similarly, when the object weight wo gets larger the object path becomes
straighter and eventually the hand starts missing the target (non-linear model: wo = 103).

Effect of wv on model predictions (Figure S12 and S13)

The effort weight we and the object weight wo were held constant and set to the value of the original fit
(linear model: we = 10−8, wo = 0.05; non-linear model: we = 2 × 10−3, wo = 10). wv was varied across
six orders of magnitude (linear model: from 10−4 to 10 - original fit: wv = 0.1; non-linear model: from
10−4 to 10 - original fit: wv = 0.1).
Results of the simulations for the linear model are depicted in Figure S12 and for the non-linear model
in Figure S13. When the velocity weight wv gets smaller, the hand and object path become more curved
and the hand path looses its loop mid-way. Increasing the velocity requirement did not result in any
significant changes over the range of values investigated.

LQR with model uncertainty and incomplete learning

To investigate the effects of model uncertainty and incomplete learning, we adapted the linear optimal
control model above in accordance with [6]. Incomplete learning of the internal model was implemented
by multiplying all entries in the A-matrix relating to the object dynamics by the scaling factor α = 0.8
(α = 1 would correspond to fully learned object dynamics as before):

A =
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In addition model uncertainty was introduced by adding state dependent noise to the dynamics:

xt+1 = (A + γtV )xt + But +

2
∑

i=1

ǫi
tCiut
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where γt is a Gaussian scalar random variable with mean 0 and standard deviation 1, and V is a scaling
parameter matrix which scales the variance of the model parameter uncertainty:

V =
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For the simulations σ was set to 0.2. The implementation is based on incomplete state observation
and the sensory noise terms were set to 0 except to 0.01 m for hand and object position and to 0.1 ms−1

for hand and object velocity. All other parameter settings were kept the same as in the model without
delay.

References

1. Todorov E, Li W (2005) A generalized iterative lqg method for locally-optimal feedback control of
constrained nonlinear . . . . American Control Conference .

2. Todorov E, Jordan MI (2002) Optimal feedback control as a theory of motor coordination. Nat
Neurosci 5: 1226–35.

3. Saunders JA, Knill DC (2005) Humans use continuous visual feedback from the hand to control
both the direction and distance of pointing movements. Experimental brain research Experimentelle
Hirnforschung Expérimentation cérébrale 162: 458–73.
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