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A Mathematical background

A.1 Curves, jets, groups and moving frames

Suppose that certain transformations act on certain objects, then a theory of invariance is a theory con-

trolling how geometrical characteristics of objects do or do not change under these transformations. For

example, an invariant quantity is a function of the considered objects which stays unchanged after all

transformations considered. Invariance is better understood through the mathematical concept of group

theory. Recall that a set of transformations is a group when these transformations can be composed and

inverted. All the groups we discuss below are formed by transformations of space or of the plane, and

the objects they transform will consist of trajectories or of elements of trajectories. The largest group we

will consider is called the affine group, or full affine group; it contains translations, rotations, dilatations,

stretching, and shearing.

Mathematicians have applied two approaches to define the notion of affine geometry: one is intrin-

sic and axiomatic (applied by Euclid, followed by Hilbert and then Artin). This approach begins with

abstract notions of points, lines and parallelism. The other approach is computational and concrete and

uses coordinates and vectors. A 2-dimensional vector space E, which can be easily identified as the set

R2 of pairs of real numbers, operates on the affine plane A, such that any pair of points (A,B) in A

determines a unique vector ~v =
−−→
AB which sends A to B, and this is expressed by B = A+~v. By choosing

a point O this identifies the plane A with the vector space E (by sending any point M to the vector
−−→
OM),

and then by choosing coordinates on E, we identify A with the numerical space R2.

We mostly disregard Euclidian distance and retain only invariant affine concepts. The main hypoth-

esis of the current paper is that affine invariance is used for motion planning and execution, but we also

explore the hypothesis that this invariance is incomplete and must be corrected by measures of distance

and area, involving, respectively, Euclidian and equi-affine invariance.

In any geometry, the end-effector position is represented by translation. In Euclidian geometry the

tangent direction of any given motion can be represented by a rotation. In affine geometry, however, the

tangent direction can also be represented by stretching or by some other transformation which depends
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on the rigidity of the moving frame. What requires no special choice is the set of all frames whereby

the first vector has a fixed direction. At a higher order of description, several measures can be used to

describe the departure of the trajectory from motion in a straight line: the most usual measure is the

Euclidian curvature but we will see that this is not an invariant measure from an affine point of view.

Consequently, in affine geometry we have a totally different notion of turning, represented by special

sets of frames. There is evidence to believe that in addition to the usual measure of turning, this latter

additional measure of turning is used to control movement duration. This evidence is provided by the

known tendency towards isochrony, i.e. the tendency of separate segments to have nearly equal movement

durations when corresponding to each other through dilatation. We will show how, when moving along

any curve, affine invariance offers convenient concepts for controlling the successive higher orders of time

derivatives of position, and how it is possible to construct stable mixtures of invariance through the use

of several geometries.

In what follows, a frame is simply a coordinate frame in the plane formed by a point and by two

vectors attached to it. Suppose a transformation group G of a given space or of the plane is given, the

mathematical theory of moving frames consists of the construction of special sets of frames, such that

the action of G on these sets of frames faithfully reflects the action on differential elements of curves. We

will show how this theory provides a representation of the differential elements of a trajectory by using

invariant functions, invariant parameterizations of the trajectory, and subgroups of G that measure inde-

termination on the frames. (In the next paragraph we define precisely the notion of differential elements

of a geometric curve at any finite order of contact.)

For simplicity we limit our investigation to a fixed plane A. We consider trajectories M(t) of a point

M when moving in this plane as a function of time t. But we wish to describe an infinitesimal piece of a

curve independently of any parametrization. For computational purposes it is frequently useful to choose

coordinates (x, y) on A. With the help of these coordinates it is easy to define the differential elements

at order n of a curve, they are called the n-jets of curves or the contact elements of order n. We denote

the corresponding set as V(n). Concretely, an element of V(0) is a point M0 = (x0, y0), an element of V(1)

is a straight line ∆0 with the point M0 located on it. The line ∆0 is the tangent to the curve through

M0, which can be described by the equation y − y0 = a0(x− x0), so a point in V(1) is described by three
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numbers x0, y0, a0 and so on. Similarly, a point in V(n) is described by n + 2 real numbers. When a

curve Γ is expressed through the equation y = f(x) and M0 = (x0, y0) is a point on Γ, the corresponding

contact element in V(n) is represented by the collection of numbers (x0, y0, f
′(x0), f ′′(x0), . . . , f (n)(x0)),

where f ′ is the derivative of f , f ′′ is its second derivative, and so on, f (n) being the n − th derivative

of f . A change of coordinates induces a change in the numbers describing the jets, but it respects the

order n. For instance, intrinsically V(1) is the tangent line, without a unit of length being defined along

it. V(2) is more difficult to visualize, it does not correspond to a unit length along this tangent. In fact,

two regular curves Γ1,Γ2 give the same element in V(2) at a common point P when they have the same

tangent T and if, for any affine coordinates chosen in the plane with the x-axis pointing along T and the

y-axis being transverse to T , the difference of the coordinates |y1− y2| between the two curves, decreases

at least as the power |x|3 when x goes to 0.

The main point of the Moving Frame Method (developed by Darboux and Cartan) is to associate

infinitesimal properties of trajectories with algebraic properties of a certain group of symmetries acting

on the plane. More precisely, we first select a set G of transformations of A onto itself, this set being

closed under both inversion of transformations and composition of transformations. The group must also

be sufficiently large to insure that every point and direction in the plane can be sent to any other point

and direction. This defines what is called a geometry by Klein and Poincare. The operation of G on the

points in the plane produces the operation of G on the set V(n) of jets of curves of order n and, following

Cartan, we try to understand this operation on n-jets by a model inside the group G itself, a model

given by translation of a certain subgroup. As we will see, this automatically gives a canonical means for

transporting a coordinate frame along the curve, producing a consistent way of representing any point in

the plane depending on the movement being generated.

We construct a sequence of groups G(0), G(1), ..., G(n), ..., where each group is included within the

previous one (i.e., G(n+1) ⊂ G(n)). For any curve Γ in the plane, and for any point P on Γ, a subset

gnG(n) in G and a sequence of numbers (u0, ..., ukn) will be associated one-to-one with a jet of order n.

This is done so that the natural restriction of jets from order n + 1 to the jets of order n corresponds to

the restriction of the invariant functions and to the inclusion of the subgroup G(n+1) within G(n).
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A fixed affine frame F0 for the affine plane A is chosen for our analysis consisting of one point O as

the origin and two vectors e0, f0. (However, note that at the end we obtain results which are independent

of the choice of F0). The element gn generates a frame gnF0, denoted by Fn when n ≥ 1 and by F(0)

when n = 0, which is called a frame of order n. Observe that this element gn is only determined modulo

G(n), meaning that one is permitted to replace gn by gnh for any element h of G(n) and then to replace

gnF0 by gnhF0 = (gnhg−1
n )(gnF0). Hence, and this is an important feature in the moving frame theory,

frames of order n form a set which is in correspondence with equivalence classes of elements in G modulo

the subgroup G(n). We call G(n) the ambiguity subgroup at order n, because it measures the residual

ambiguity on the frame at the order n of the curve elements.

Here we make a conceptual remark: The subgroup H(n)=gnG(n)g
−1
n of G depends only on the consid-

ered jet but is independent of the choice of gn. Thus, this group properly counts the residual indeterminacy

at the order n on the frame. The difference between H(n) and G(n) is: G(n) is universal and measures the

geometrical indeterminacy in the ambient space (or, as here, in the plane) in the considered geometry

given any jet of order n of curves, but H(n) varies with the given jet of order n. In the analysis all the

matrices presented are belonging to the subgroups G(n).

The numbers u0, ..., ukn are called the invariants of Γ up to order n. Their meaning is as follows: two

curves have the same invariants up to order n if and only if there is a transformation in G which makes

one of the curves equivalent to the other curve up to the order n.

Note that in our main application only invariant quantities and invariant parameterizations appear,

while the constructed canonical frames are not explicit. However, we think that these canonical frames

are the main concept underlying the invariant parametrization, because they naturally generate such

parametrization and because they permit description of the entire plane starting only with a given curve.

When n becomes larger, we examine a given curve segment with respect to higher and higher geo-

metric orders, a point of order zero, a tangent of order one and so on. The subsets gnG(n) are included

one within the other in a decreasing manner. Finally, one obtains a set of one and only one element in

G, which gives the Canonical Moving Frame belonging to the geometry G. The miracle that justifies the
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application of this theory to the problem of selecting the timing of motion along a given trajectory is

that obtaining the unique canonical frame is sufficient for selecting a parametrization for the curve and

this parametrization can then be considered as a candidate for prescribing movement kinematics along

the curve. That is, duration results from the geometry. However, different geometries can be considered

and, consequently, different timing parameterizations can be applied. Hence, we must understand how

these different parameterizations can be chosen and combined.

Depending on the curves considered, the invariant quantities derived after the frames are computed

are the curvature in G and its successive derivatives. For example we encounter the full affine and the

equi-affine curvatures.

Assuming that G is a continuous proper sub-group of the group of differentiable isomorphisms of the

plane, the possible choices for G were classified by Lie and Klein [1–3] These groups all depend on the

choice of a particular affine structure in the plane.

Let us choose affine coordinates on A. The full affine group G is the group of all affinities:

X = ax + by + u

Y = cx + dy + v

(S1)

where a, b, c, d, u, v are specified real numbers such that ad− bc 6= 0, and where (x, y) are the coordinates

of some general point in the plane and (X, Y ) the coordinates of its image obtained by the affine trans-

formation.

Within the affine group we obtain the equi-affine subgroup G1, expressed by exactly the same formu-

lae but for which ad− bc = ±1 is additionally imposed. To simplify our presentation, below we consider

only the sub-group SG defined by ad− bc = 1, which is called the special affine group.

Inside G1 (resp. SG) there are many subgroups defining more rigid geometries, and all these sub-

groups are associated with an Euclidian structure, that is, with a metric which is a distance function
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compatible with the affine structure. The multiplicity of choices for these metrics is resolved by choosing

particular coordinates, because in R2 we naturally first have the ordinary metric (given by the square root

of the sum of difference of coordinates). However, we must understand that another choice of coordinates

would have produced a completely different metric. Only rotations and translations, possibly composed

with orthogonal symmetries, have no effect on the distance metric. In fact, a little thought convinces us

that these metrics correspond to the oriented ellipses centered on a given point.

When one metric and the orthogonal coordinates associated with it are chosen, the Euclidian group

of affine isometries SGE is described inside SG by the equations

X = x cos θ − y sin θ + u

Y = x sin θ + y cos θ + v

(S2)

To obtain the complete Euclidian group GE of this metric, we must add all reflections (i.e. symmetries

with respect to straight lines), which are described by the above formulae except for the modification,

whereby Y must be changed into −Y in the second equation.

In the following section we give a complete exposition of the moving frame method for the case of

Euclidian, equi-affine and affine geometries of the plane. The full affine case has not yet been described

in detail in the literature (cf. [4–6]).

A.2 Three examples of Cartan frames

In this section we describe the computational principles of the moving frame method in order to gain

understanding of geometric canonical parameters and of canonical frames. We particularly hope to see

how canonical parameters emerge from the inspection of higher order contact elements of the curve, order

after order. For those who are not geometricians, this study is not so simple, so we first very quickly

summarize the main results, without mentioning the method itself.

In Euclidian geometry, the parameter considered is the Euclidian arc-length, and the moving frame
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is formed by an origin ”the location at which you presently are”, the first unit vector pointing towards

”the location at which you will immediately be”, that is, the tangent vector, and a second vector describ-

ing all the points within the plane represented by the values of the coordinates along the axis which is

”perpendicular to the tangent vector”, that is the normal vector. The only subtlety is with respect to

orientation, whether you are moving towards the front or towards the back, respectively, towards the left

or the right.

In equi-affine geometry (which can be seen as a geometry with a given unit of area, or as a relative affine

geometry where ”area preservation” is important), things become more complicated. The canonical pa-

rameter generates the 2/3 power law. There is no invariant measure of turning that plays the same role

as Euclidian curvature, but there is an invariantly defined normal equi-affine direction. The canonical

equi-affine computation establishes the normal direction by a ”parabolic approximation”. That is, the

parabola nearest to any given curve has a ”conjugate direction”, this direction being that which bisects

any secant segment parallel to the tangent direction. The first invariant appearing is the equi-affine cur-

vature k1, which can be understood as the ”size of the area lying between the conic closest to the curve

and the oscillating parabola”. This area is negative if this conic is an ellipse, positive if it is a hyperbola

and 0 if it is a parabola. The equi-affine curvature is an invariant of order 4, where there is no invariant

of the order 3. For motion planning this implies that no equi-affine invariant appears at the third order,

which is the order of jerk.

In affine geometry, things are much more unusual. No invariant appears even at order 4, because only the

relative change in the size of the area between the oscillating parabola and the closest conic is important

in full affine geometry. The canonical parameter σ generates no power laws, except for moving along

very special curves, such as conics where affine geometry gives the same 2/3 power law as when using the

equi-affine parameter σ1. The concrete interpretation of σ is achieved through a very basic scaling law:

when using σ as parameter, the transverse distance (along the affine normal) scales as the square of the

tangential distance (along the tangent). Note that, apart from this latter property, the direction of the

normal affine axis is the same as in equi-affine geometry and is obtained by finding the conjugate of the

nearest parabola. The main novelty of using affine parametrization is that, when time is only a function

of σ, full isochrony is achieved. Hence, if two pieces of curves are transformed one into the other by an
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affine transformation, these curves are traversed with the same total duration. It is this phenomenon

which can be called ”localization of isochrony”. The simplest example is again obtained when examining

conics: you ”observe a circle” and then you move yourself along it. What you have planned is a constant

Euclidian velocity, but when superimposed on what you really see, which is an ellipse, your actual velocity

fits the 2/3 power law of motion. Of course, measurement of area is not relevant here and the motion

plan is affine invariant.

Now let us begin with our mathematical derivation:

First, for illustration and to give the flavor of the Cartan method, using a very simple case, we apply

this method to Euclidian geometry. Let us fix an Euclidian metric on the affine plane and denote by

GE the group of isometries (Euclidian transformations). We also fix an Euclidian reference frame F0

consisting in this case of an origin O and of two unit orthogonal vectors e0, f0. The subgroup of isometries

fixing the point of origin O is the so-called orthogonal group O2(R), it is the convenient inertia group

GE(0) for classifying curves at the order 0. At this order only the point O is important. Every point

M in A can be obtained from O through a translation, but it can also be obtained through a rotation

around O which can be followed by another translation. Thus the ambiguity of the action is described

by O2(R), and for the order zero, nothing else need to be said.

At the order one, the inertia group of order 1, GE(1) has to globally respect the direction of the

first vector (axis) of the frame F0. This inertia group has four elements and it is traditionally called

the Klein’s group. By choosing an orientation of the plane A, the inertia of degree 0 is reduced to the

special-orthogonal transformation SO2(R), and by additionally choosing an orientation along the exam-

ined curve Γ, we reduce the inertia of degree 1 to the identity group Id. Hence, a canonical frame appears

at the order 1 and it is the ordinary Frenet-Serret frame. Because the unit vector along the tangent is

established, this frame is accompanied by a canonical parameterization, which is well defined up to an

additive constant at order one: the Euclidian arc-length s.

The invariant appearing at the order two is the Euclidian curvature κ. The radius of curvature is the

inverse of the Euclidian curvature R = 1/|κ| in [0,∞]. The canonical infinitesimal equations in this case
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are due to Frenet-Serret, and they describe the motion of the canonical Euclidian frame as

dM

ds
= J1

dJ1

ds
= κJ2

dJ2

ds
= −κJ1

(S3)

In this sense, any smooth curve (with a continuous tangent) in Euclidian geometry determines the plane,

once a direction (back or front) and a normal direction (right or left) are chosen.

Now let us apply the same moving frame method to equi-affine geometry (as Explained, for instance,

in [4]). For simplicity we restrict ourselves (as Cartan did) to the subgroup SG of G1 which is de-

fined by the preceding equations (S1) by imposing, in addition, the special condition ad − bc = +1.

The reference frame F0 is fixed once and for all as before, and it particularly determines a well defined

unit of area in the affine plane by assuming that the parallelogram with sides e0, f0 has an area equal to 1.

At the order 0, as in the Euclidian case, the element g0 has only to transform O into M , and the

ambiguity of degree zero is described by the subgroup SG(0) of SG defined by u = v = 0 when we use

the notation of (S1); it is traditionally named SL2(R):

SG(0) = SL2(R) =








a b

c d




∣∣∣∣ad− bc = +1





. (S4)

In the second step, to obtain a moving frame of order 1, F1, since we have already fixed the point M , we

only have to fix the first vector in the direction of the tangent vector. Note that we do not yet know the

size of that vector. To find the subgroup SG(1), let R = (M, I1, I2) and R = (M, J1, J2) be two smooth

fields of coordinate frames centered along the curve Γ, both depending on an arbitrary parametrization

t. The two frames are transformed one into other by an element of G(0):

I1 = aJ1 + cJ2. (S5)

I2 = bJ1 + dJ2. (S6)

10



As the vectors I1 and J1 are maintained in the direction of the tangent vector to the curve, we get that

c = 0. In addition ad− bc = 1, hence a = d−1. For convenience let us set a = λ and b = µλ−1.

The analog of GE(1) is now the sub-group of SG formed by matrices respecting the first axis of the

coordinate frame (which corresponds to the tangent in the moving frame). It is the group of upper

triangular matrices of determinant one, denoted by SG(1) :

SG(1) =








λ µλ−1

0 λ−1




∣∣∣∣λ 6= 0





. (S7)

and there is no invariant of order 1.

To find the set of moving frames F2 and the subgroup SG(2) of order 2, let us look again at the frame

coordinates R = (M, I1, I2). Then the movement of the frame R along the curve, described at the first

order of approximation, is defined by the following general infinitesimal moving frame set of equations:

dM = ω1I1

dI1 = ω11I1 + ω12I2

dI2 = ω21I1 + ω22I2

(S8)

In these formulae, the symbol ω1 denotes the differential form dt of the given parameterization. The

other coefficients are also differential forms. It can be easily shown that the equi-affine restriction of

the frames to SG implies ω11 + ω22 = 0. [It is because the preceding system (S8) represents the first

order in the variation of the frame: the coordinates of the vectors I1(t0 + ε) = ..., I2(t0 + ε) = ... ex-

pressed as linear combinations of I1(t0), I2(t0) become a(t0 + ε) = a(t0)+ εω11 + ..., and so on. Moreover

a(t0) = d(t0) = 1, b(t0) = c(t0) = 0, so when we write that the equality ad − bc = 1 holds true for each

value of t = t0 + ε, by equating the coefficient of ε to zero, we obtain ω11 + ω22 = 0.]

We now obtain a convenient measure of turning in the equi-affine sense by the following definition:

b1 = ω12/ω1. Note that the value of b1 depends on the chosen family of frames R because ω1 and ω12/ω1

depend on it. The case of b1 = 0 is exceptional; the tangent is stationary, meaning that the curve Γ
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has an inflection at the point studied. Except for the case b1 = 0, we show the existence of special

smooth families of frames along the curve, such that b1 takes the value 1. Let us look again at a path of

transformations from R = (M, I1, I2) to R = (M, J1, J2) such that this time the transformations belong

to SG(1), we get:

I1 = λJ1

I2 = λ−1(J2 + µJ1)
(S9)

Let us write the moving frame equations for R:

dM = ω1J1

dJ1 = ω11J1 + ω12J2

dJ2 = ω21J1 + ω22J2

(S10)

We then have

dM = ω1I1 = ω1J1,

Consequently

ω1 = λω1.

Moreover, if we derive the first equation in equation set (S9) and use equation set (S10) we get

dI1 = λdJ1 + dλJ1 =

= λ(ω11J1 + ω12J2) + dλJ1.

Now we can replace J1 and J2 by using equation set (S9) and get an equation that contains only dI1, I1

and I2:

dI1 = (λω11 + dλ)λ−1I1 + λω12(λI2 − µλ−1I1).

Now, by comparing this equation with the second equation in equation set (S8), we get that ω12 = λ2ω12.

Then, by using the definitions b1 = ω12/ω1 and b1 = ω12/ω1, we obtain the formula

b1 = λ3b1.
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So, except for the case that b1 = 0, i.e., the case corresponding to an inflection point, there is only one

real value of λ such that b1 = 1. Note that the right λ for obtaining b1 = 1 is computed using b1 which

depends only on the 2-jet of Γ. The consequence is the possibility of choosing a frame that depends on

the 2-jet of the curve so that the quantity of turning is equal to 1. Following this, the condition λ = 1 is

able to fix the frame of order 2. Accordingly the group of ambiguity at order two is the group SG(2) of

upper triangular real 2 by 2 matrices with a diagonal (1, 1):

SG(2) =








1 µ

0 1








. (S11)

Now, to construct the set of moving frames of order 3, let us consider a field of frames R, where all along

the curve segement we have guaranteed b1 = 1. As differential calculus easily shows, the infinitesimal

equation, near the identity matrix for the subgroup SG(2) inside SG(1), is ω11 = 0. So let us define the

new quantity c2 = ω11/ω1. We can interpret c2 as the ”third order quantity of turning” along Γ. We will

show that there exist frames R determined by the 3-jet of Γ such that b1 = 1 and also c2 = 0. Let us

look, as before, at the change of frames along Γ from R = (I1, I2) to R = (J1, J2). Now we have more

constraints:
I1 = J1

I2 = J2 + µJ1

(S12)

With the same notations as in (S8) and (S10) and the same procedure we used in order 2 we find:

ω1 = ω1

ω11 = ω11 − µω12.

(S13)

From this and the constraint of order one, i.e. ω12 = ω1, it follows that:

c2 = c2 − µ

Remark: the right µ to obtain c2 = 0 depends on the value of c2 which was computed from third order

contacts on Γ.
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Thus, it is always possible to obtain c2 = 0 by adapting the ”shearing” coefficient µ. Accordingly, a

frame of order 3 will be a frame of order 2 such that c2 = 0. The group SG(3) measuring the ambiguity

of the frame at the order 3 is reduced to the Identity. Thus, the resulting frame of order 3 is unique, it

is called the equi-affine Frenet-Serret frame.

Note that already at order 2, the form ω1 is well defined and gives the equi-affine parameter σ1, up to an

additive constant through ω1 = dσ1. In addition, b1 = ω12/ω1 = 1, hence, ω12 = dσ1. From the condition

of order 3 we get that c2 = ω11/ω1 = 0, hence, ω11 = 0. From the condition ω11 + ω22 = 0 we get that

ω22 = 0. In conclusion:

dM = I1dσ1

dI1 = I2dσ1

dI2 = I1ω21

(S14)

The first invariant appears at order 4. It is defined as k1 = ω21/ω1 and is named the equi-affine

curvature. All higher order invariants are obtained though the differentiation of k1.

From equation set (S14) the infinitesimal variation of the equi-affine Frenet frame is given by

dM

dσ1
= I1

dI1

dσ1
= I2

dI2

dσ1
= k1I1.

(S15)

Note that the sign of k1 is independent of the orientation of Γ: if σ1 is replaced by −σ1, the tangent

vector I1 is replaced by −I1, the acceleration vector I2 is unchanged and so the value of k1 does not change.

If k1 < 0 the osculating conic is an ellipse, if k1 > 0 it is a hyperbola, if k1 = 0 it is a parabola.

Remark: as described by Blaschke [7], the parameter σ1 is the one for which the parallelogram generated

by the velocity and acceleration vectors has an area of 1. It can be recovered from any other parameteri-

zation by taking the integral of the third root of the absolute value of x′y′′−y′x′′, the Euclidian curvature.

To compute σ1, let us start with an Euclidian Serret-Frenet frame (J1, J2), where b1 = κ = R−1.
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According to what we have already seen, to obtain a frame I1 = λJ1, I2 = λ−1(I1 + µJ2) with b1 = 1,

it is necessary and sufficient to verify that λ3b1 = 1, then λ = 3
√

R is a good choice. This gives the 2/3

power law:
ds

dσ1
= R1/3

It is not difficult to compute k1, the equi-affine curvature, from the Euclidian frame:

k1 = R−1/3

[
1
3

d2R

ds2
− 1

R

[
1 +

1
9
(
dR

ds
)2

]]

For an ellipse k1 is a negative constant and the total area enclosed by the ellipse equals π(−k1)−3/2.

This can easily be proved by transforming the ellipse into a circle R = constant by an area-preserving

transformation.

If we start with an ordinary Cartesian frame R where the curve Γ is written as y = f(x), the privileged

point being O, such that f(O) = 0, f ′(O) = 0 and f”(O) > 0 we have:

ω1 = dx, ω11 = ω22 = 0, ω12 = f ′′(O)dx, ω21 = 0.

At the order 4, we find (cf. Cartan):

k1 =
1
2
(f ′′−2/3)′′(O).

And then the reduced equation for any curve in the equi-affine Frenet frame is:

y1 =
1
2
x2

1 −
1
8
k1x

4
1 −

1
40

dk1

dσ1
x5

1 + ... (S16)

Now let us study the main group G of all affine transformations. Recall that, when a system of affine

coordinates (x, y) is given, an affine transformation is written as:

X = ax + by + u

Y = cx + dy + v

(S17)

where a, b, c, d, u, v are specified real numbers such that ad− bc 6= 0. As for the Euclidian and equi-affine
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groups, at order 0 we fix the moving frame F0 = (O, e0, f0). Once F0 is fixed, a good choice for the

first ambiguity subgroup G(0) is again the stabilizer of O. By fixing the origin it satisfies the condition

u = v = 0. The group G(0) is the full real linear group GL2(R):

G(0) = GL2(R) =








a b

c d




∣∣∣∣ad− bc 6= 0





. (S18)

Clearly there is no invariant of order 0.

At order 1, as in the equi-affine case, G(1) is chosen as the stabilizer of the axis in F0 sent to the

tangent direction. As in the equi-affine case we obtain c = 0. For convenience let us set a = λ, d = τ−1

and b = µτ−1:

G(1) =








λ µ/τ

0 1/τ




∣∣∣∣λτ 6= 0





. (S19)

Between two frames of first order (M, I1, I2), (M, J1, J2) attached at M0 to a given curve Γ, there is a

transformation in G(1):

I1 = λJ1

I2 =
1
τ

(J2 + µJ1)
(S20)

Interesting things begin at the second order. Suppose we have a smooth field R = (M, I1, I2) of

coordinate frames along Γ, all being of first order; that is, for each point of Γ near the point M0, the

vector I1 is along the tangent axis. As we have seen in the equi-affine case, the movement of R at the

first order is defined by the moving frame equations (S8). As above in the equi-affine case, we denote by

b1 the function on Γ which is equal to ω12/ω1. It will also serve here as the measure of turning in the

chosen field of frames.

Let R be another field of frames of order 1 for the same Γ, R = (M,J1, J2), which gives the forms

ω1, ω11, ..., ω22. Repeating the calculations of the second order in the equi-affine case, with d = 1/τ

instead of 1/λ, we obtain in the affine case:

b1 = λ2τb1. (S21)
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Then, if M is not an inflection point, i.e. if b1 6= 0, it is always possible to choose λ and τ such that

b1 = 1. We define G(2) in G(1) by the condition: λ2τ = 1. Hence G(2) is the group of 2 × 2 matrices of

the form 


λ µλ2

0 λ2


 .

The group G(2) is richer than in the equi-affine case, being isomorphic to the affine group on a line. It

measures the ambiguity at a second order on the pure affine frame. There is no invariant of order 2, and

G(2) is the inertia group at the order 2.

For order 3 we repeat the operation with paths of frames R = (I1, I2), R = (J1, J2) of second order,

that is along Γ we assume that the equations: ω12 = ω1 and ω12 = ω1 are satisfied. Let us define a new

quantity b2:

b2 =
ω11 − 1

2ω22

ω1
.

This quantity describes the residual velocity of the frame R modulo the action of G(2).

Between R and R, another easy calculation gives

λω1 = ω1,

ω11 = ω11 +
dλ

λ
− ω12µ,

ω22 = ω22 + 2
dλ

λ
+ ω12µ.

Hence,

b2 = λb2 − 3
2
λµ. (S22)

Here, as in the equi-affine case, no restriction is necessary; it is always possible to choose the value of µ

such that b2 = 0. Then we define a frame of order three by the condition b2 = 0. Any transformation

between two such frames must satisfy µ = 0; hence we define G(3) in G(2) by the equation µ = 0:

G(3) =








λ 0

0 λ2








.

Such transformations are isomorphic to the group R∗. However, observe that the operation on the plane
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is not through ordinary dilatation. The tangential and normal affine directions are not submitted to the

same scaling law: the distance in the normal direction scales as the square root of the distance in the

tangent direction.

There is no invariant of order 3. We have two conditions on the infinitesimal motions of frames of

order 3: ω11 = 1
2ω22 and ω12 = ω1.

At order 4 we define the last quantity of change as

b3 =
ω21

ω1
.

Under an element of G(3) as transformation from R to R we get ω21 = λω21. Hence:

b3 = λ2b3. (S23)

Then there are three possibilities for b3:

1. b3 > 0, we can adapt λ such that b3 = +1; we call this case a hyperbolic point.

2. b3 < 0, we adapt λ such that b3 = −1; this is the case of an elliptic point.

3. b3 = 0, this is the degenerate case of a parabolic point.

In a frame of order 4 we impose b3 = ε, with ε = −1, +1 or 0.

The two cases b3 = −1 and b3 = +1 are intrinsically different from the geometrical point of view: in

the elliptic case the osculating conic is an ellipse and in the hyperbolic case it is an hyperbola. Naturally

for b3 = 0 it is a parabola, but here λ continues to be arbitrary. Such a special point must be separately

analyzed.

For ε = ±1 the group G(4) reduced to (λ = ±1, τ = 1) is the true inertia of order 4:

G(4) =







±1 0

0 1








.
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The main conclusion is that for each point on an oriented curve there is a canonical Frenet frame of order

4. In particular, the vector I1 is imposed, and ω1 is also fixed. This automatically gives a local privileged

parameter - the purely affine arc-length along Γ. We denote it by σ. The condition for this numerical

function on Γ is ω1 = dσ, so σ is well defined only up to an additive constant.

All frames of order 5 and more coincide with this frame but, starting with order 5, invariants start to

exist. The first invariant is of order 5 and is called the affine curvature:

K =
ω11

ω1
(S24)

At order 6 or higher, all local invariants of Γ modulo G are deducible from the derivatives of the function

K(σ) and from the type of b3, i.e., being elliptic or hyperbolic. Then the equations of the purely affine

moving frame are:
dM

dσ
= I1

dI1

dσ
= KI1 + I2

dI2

dσ
= εI1 + 2KI2.

(S25)

The link between affine and equi-affine Frenet frames is very simple:

the affine basis vectors I1, I2 have the same directions as the equi-affine basis vectors J1, J2, and the

ratios I1/J1 = γ, I2/J2 = ν satisfy the fundamental relations:

ν = γ2, (S26)

1
γ

dγ

dσ
= K. (S27)

Such a function γ, determined up to a multiplicative constant, can be called an affine gain factor. An

easy identification of frames shows that γ−2 is a constant multiple of |k1|.
For the canonical parameter σ, this implies the modified 2/3 power law:

dσ

ds
= R−1/3|k1|1/2. (S28)
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This gives the following relations between K and k1 :

K = −1
2

1
k1

dk1

dσ
=

d

dσ1
(

1√
k1

).

Let a point O be specified on the oriented curve Γ and consider the coordinates (x, y) for A within the

canonical frame (I1(0), I2(0)). Let us choose the parameter σ with σ = 0 at O. Then we easily deduce

from the system (S25), the parameterized equation of Γ in the neighborhood of O:

x(σ) = σ +
1
6
(ε + K

′
+ K2)σ3 +

1
24

(4εK − 3KK
′
+ K

′′
+ K3)σ4 + . . .

y(σ) =
1
2
σ2 +

1
2
Kσ3 +

1
24

(4K
′
+ 7K2 + ε)σ4 + . . . ,

(S29)

which gives the following implicit equation up to order 5 in the affine canonical frame:

y =
1
2
x2 +

1
2
Kx3 +

1
8
(K2 − ε)x4 + . . . (S30)

These equations are not the simplest possible ones in an affine frame, because the reduced equi-affine

form (S16) is apparently simpler. The affine arc-length σ is more natural than σ1 because a curve and its

image through an affine transform g do not have the same parameter σ1, the latter being true only when

det(g) = ±1. In general, σ1 is transformed by a one dimensional affine change aσ1 + b. If we privilege the

equi-affine subgroup, without choosing a unit of area, all that we do has a pure affine significance but σ1

is only defined up to an affine function, as in t = aσ1 + b. Once a unit of area is chosen, the constant 1/a

may be called an equi-affine gain factor, because in the case of a Euclidian plane the parameter t gives

a Euclidian velocity of size a−1R1/3.

Instead of restricting the allowed transformations we can extend them by invoking the projective

group PGL3. this group does not act linearly but through homographic functions of affine coordinates

(so, to properly define its action we must add a circle of points at infinity to the affine plane):

X =
ax + by + u

ex + fy + w
,

Y =
cx + dy + v

ex + fy + w
.

(S31)
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Working with this larger geometry, it is possible to obtain an even simpler reduced equation (valid for

non-sextatic points). Here the Halphen’ invariant of order 7, denoted by k, which is also called projective

curvature, appears and:

Y =
1
2
X2 − 1

20
X5 +

k

280
X7 + . . .

A.3 Degeneracies

As we shall see, near inflection points the affine arc-length σ tends to infinity like the logarithm of s.

Thus, if we persist with the choice of time being proportional to σ, i.e. a constant speed from the affine

point of view, an infinite time is necessary to reach the singular point (as if Zeno were right in his paradox,

and Achilles, who naturally is very affine, could have never attained the turtle). Near parabolic points

we see that the inverse happens; σ tends to zero as s3/2. That is, if we persist with the choice that time

is proportional to σ, the speed will tend to infinity (like s−1/3) when approaching the parabolic point

(and even Achilles cannot reach such a speed, so Zeno would have again been right).

Regarding the equi-affine parametrization σ1, we see that the situation is totally different. At inflec-

tion points the speed tends to infinity like a constant time s−1/3, and at parabolic points, of course, there

is no singularity at all. At these points equi-affine geometry applies regularly.

Near a non-degenerate inflection point the radius of curvature R admits an asymptotic expansion:

R = Cs−1 + C0 + C1s + C2s
2 + ...

From the expression of k1 as a function of R and its successive derivatives, we easily compute the

asymptotic development:

k1 =
5
9
C2/3s−8/3[1− 2

15
C0

C
s + (

4
15

C1

C
− 2

45
C2

0

C2
)s2 + ...].

Note that the constant C is strictly positive, then k1 > 0 is also strictly positive, and thus, near an

inflection point we are automatically inside the hyperbolic regime.
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From the formula of the canonical affine velocity, ds
dσ = R1/3|k1|−1/2, we obtain the asymptotic expansion:

ds

dσ
=

3s√
5
[1 +

2
5

C0

C
s + (

1
5

C1

C
− 3

50
C2

0

C2
)s2 + ...].

Here we see that the parameter σ has a logarithmic divergence: σ ∼
√

5
3 log( 1

s ) and the following asymp-

totic of the full affine curvature K holds:

K =
4√
5
(1 +

9
20

C0

C
s + ...)

Suppose now that we are working with the equi-affine parametrization of Γ with units of area coming

from the metric. Then, as we approach the inflection point, the speed satisfies:

ds

dσ1
= R1/3 ∼ C1/3s−1/3

We see that contrary to affine velocity, the equi-affine velocity tends to infinity at an inflection point.

We observe that the equation

dt = (dσ)1/4(dσ1)3/4

gives
ds

dt
= (

ds

dσ
)1/4(

ds

dσ1
)3/4

∼ (
3s√
5
)1/4(C1/3s−1/3)3/4 ∼ (

3C√
5
)1/4.

Consequently ds
dt is a regular function. We see that, when we choose dt = dσ1/4dσ

3/4
1 we obtain a

parametrization of inflection points without singularity. Moreover, it is a well defined equi-affine invari-

ant parameterization.
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B First test: elliptical trajectories

B.1 Data recording and processing

Three subjects (two right-handed, one left-handed, all males aged 28-31) volunteered for this experiment.

None reported any previous hand injuries and all gave their informed consent prior to their inclusion

in the study. They were instructed to continuously trace ten different elliptical paths. The shapes of

these ellipses were; (a,b) = (49,46), (49,27), (49,5), (166,156), (166,90), (166, 17) (283,267), (283,154),

(283,28) and (408,287), where ’a’ and ’b’ mark the minor and major half-axes of ellipse, respectively, and

the units are in mm. The ellipses to be traced were drawn on white sheets placed on the table in front

of the subjects. Each ellipse was traced at three different speeds: slow, natural and fast. Each elliptical

trajectory was traced 13 times and the movements recorded using a WACOM Intuos A3-size graphics

table (model GD-1218-R) with a spatial accuracy of 0.25 mm and a temporal resolution of 200 Hz.

The ’x’ and ’y’ coordinates of the subjects’ tracings were separately approximated by a Fourier series

containing the coefficients of up to 4.5 Hz, where 95% of the power spectrum of the data was below 4.5

Hz. To obtain fully repetitive movements (i.e., to fully complete the elliptical curves), a second order

polynomial was added to each approximation.

These approximations were then analytically differentiated to obtain the speed, curvature and any

other desired kinematic variable.

B.2 Theoretical and experimental testing of the law of area

Both the 2/3 power law and the isochrony principle have been thoroughly tested for handwriting and

drawing movements [8–13]. However, it is not clear whether these two descriptions have a similar origin,

since the 2/3 power law is a local kinematic constraint while the isochrony principle refers to a more

global property.

In testing the 2/3 power law, one examines the relationship between local speed V and local radius

of curvature R:

log V = log γ + β log R. (S32)

On the other hand, to assess the tendency towards isochrony, the link between the mean gain factor γ
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and the global Euclidian perimeter P is usually examined:

log γ = C + α log P. (S33)

For ellipses, γ was claimed to be nearly constant during an entire period, β was nearly 1/3 and perfect

isochrony corresponded to α = 2/3 (cf. [12]).

Even after associating the empirical 2/3 power law and equi-affine geometry [14–16], the connection

between the 2/3 power law and global isochrony was still not understood. A priori the equi-affine

hypothesis predicts only that γ is constant along an ellipse but states nothing about its magnitude. This

is precisely where the full affine treatment makes a new contribution: for ellipses it imposes the values

of both α and β at the same time. For any curve it stipulates the dependence of the gain factor on

equi-affine curvature, namely: γ = C0|k1|−1/2. On the other hand, if an ellipse encloses a total area A,

and since for ellipses k1 = CA−2/3 , the full affine model and consequently global isochrony imply that:

γ = C ′A1/3.

Since the area A enclosed by the ellipse is proportional to P 2, where P is the ellipse’s perimeter, we

obtain (S33) with α = 2/3. Equation (S33) matches the empirical observations of Lacquaniti et al. [8] for

elliptical drawings. Furthermore, Viviani and Cenzato [12] successfully accounted for (S33) by joining the

2/3rd power law with perfect isochrony and showing that for an ellipse α = 2/3. But the main advantage

of our affine treatment is in liberating us from the Euclidian quantity P . Now, the simplest law that we

examine is better expressed by:

log γ = log C ′ +
1
3

log A,

where A is the total area enclosed by the ellipse.

In Figure S1 we show the results of Logγ versus LogA.

Interpreting Figure S1 and table 1 in the main paper we observe the following:

a) The slopes of the regression lines ranged from 0.12 to 0.18 for S1 and from 0.17 to 0.23 for S2. For the

3rd subject the value of the slope was closer to 0.33. This subject traced the ellipses significantly faster
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for all prescribed drawing speeds.

b) The intercepts, λ, for S1 and S2 were also very close to each other for all speeds and increased mono-

tonically with speed.

c) The coefficient of determination, R2 remained nearly the same over changes in speed for all the sub-

jects, being higher for S2 and S3 than for S1.

All these results provide a direct test of the affine invariance and allow us to specifically state what is

global isochrony. Let us remark that Isochrony does not mean that different curves must be drawn taking

the same total movement duration. Such a behavior is only expected for curves which fully transform,

one into the other, through affine transformations. While any ellipse is the affine transform of any other

ellipse, a priori when the subjects deformed the curves they deformed them similarly across different

speeds and this is therefore consistent with global isochrony.

B.3 Limits of isochrony

Following the above, we also looked for direct relationships between the total movement durations T for

the execution of the ellipses, their total perimeters marked by P and their eccentricities marked by ε.

For an ellipse of perimeter P and eccentricity ε, and taking into account the 2/3 power law plus global

isochrony, it was analytically shown [12] that:

log γ = C +
2
3

log P + f(ε). (S34)

Since the function f(ε) is a mildly varying function of ε, the ellipse’s eccentricity, this is approximated

by equation S33 above with α = 2/3 (see [11]).

Consider an ellipse
x2

a2
+

y2

b2
= 1,

and write x = a cos ϕ, y = b sin ϕ; if s denotes the curvilinear Euclidian distance, we have

ds2

dϕ2
= a2 cos2 ϕ + b2 sin2 ϕ = a2(1− ε2 sin2 ϕ)

where ε is the eccentricity and ϕ is the angle.
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Then the corresponding arc-length for the elliptical section between ϕ = 0 and ϕ is:

∆s = a

∫ ϕ

0

√
1− ε2 sin2 ϕdϕ.

Now, dividing ∆s by a gives the definition of the Legendre integral of second species: E(ϕ; ε). When the

superior limit of the integral is taken as π/2, it is called the complete integral of the second kind and is

denoted by E(ε). It measures a quarter of the perimeter P divided by the semi-axis a.

Using Wallis formulae [17], it is easy to expand E in the powers of ε:

E =
π

2

[
1−

n=∞∑
n=1

(
1 · 3 · 5 · . . . · (2n− 1)

2 · 4 · 6 · . . . · 2n

2
)

ε2n

2n− 1

]
.

The area A of the ellipse is equal to πab = πa2
√

1− ε2, and the gain factor γ given by affine geometry

equals CA1/3, so

log γ = log(C ′) +
2
3

log(a) +
1
2

log(1− ε2)

= log(C”) +
2
3

log(P )− log(E/
√

1− ε2).

This provides an exact expression for the function f in the formula of Viviani and Cenzato (see equation

(S34) above). And from the expansion of E we obtain a testable expansion and estimation of f . However,

what Viviani and Schneider really found was that when P increases, the empirically based expression for

the dependence of movement duration T on the perimeter of the ellipse P is:

log T = C + η log P, (S35)

with the mean value η = 0.4. This indicates a real departure from perfect isochrony, namely from η = 0.

Here we propose a different formula relating log T to log P . This is a non-linear formula, expressing

that when P grows too much, an Euclidian behavior competes with the affine one and plays a progressively

increasing role. This is consistent with several ellipses we examined by looking at log v versus log κ along

ellipses (Figure 1 in the main paper).
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C Global scaling

While we mostly examined elliptical and more complex drawing movements, here we wish to briefly

examine hand scribbling movements for which complete preplanning is unlikely. For such motions the

following empirical law for the mean value of gain factor γ̄ and the radius r of the frame within which

the subject was producing the continuous scribbling was described [11]:

log γ̄ = 0.701 + 0.634 log r. (S36)

This observation agrees completely with the pure affine rule, since affine invariance predicts that γ scales

as R2/3, where R denotes the local radius of curvature. Now it is reasonable to expect that R will scale

as the frame radius r under dilatation. This, however, does not mean at all that there are no equi-affine

(or parabolic) or straight segments among such scribbling motions. To the contrary, their presence is

expected, but as is explained in section E.1 through continuity plus monotonicity the speeds for such seg-

ments can scale similarly to the speed of affine segments. Thus, the fact that we have full-affine segments

is expected to affect the behavior in all segments.

D Second test: complex forms: velocity prediction

D.1 Data recording and approximation

In the drawing experiment (from [18]) three subjects were asked to repeatedly draw each figural form (see

Figure S2) for 10 seconds on a digitizing tablet (Numonics Corporation, Montgomeryville, PA; Model

2200-0.60TL.F). Each subject performed three such 10 sec trials.

The locomotion data were recorded using an optoelectronic video motion capture device (Vicon V8,

Oxford Metrics Ltd.) consisting of 13 cameras. A set of light-reflective markers were placed on the

subjects’ bodies. The data were recorded at a sampling rate of 60Hz. That is, the time interval between

any two adjacent data samples was dt = 0.01667 seconds. Two reference points, the M-point and the

R-point, represented the location of the subject in the 2D plane (see Figure S3).
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D.2 Curvature and velocity computations

To compare different velocity profiles along the same path, we compared the tangential velocities at

the same position on the curve. For this purpose, we calculated the velocities at points along the

trajectory γ(r) =
(
fx(r), fy(r)

)
which were situated at a constant Euclidian distance from each other.

We marked these points by S = [0 : dsm : Sm], where Sm is the total Euclidian arc-length and dsm is the

constant distance between consecutive points along S for a given trial m. We calculated the time stamps

between points in S in the experimental parameterization by interpolation. This does not change the

parameterization. The only difference between the points s ∈ S and t ∈ T is the samples that we use.

The derivative of the function, dr/dt, is calculated on the points s ∈ S by spline interpolation.

The experimental velocity is calculated as

v(s) =
dr

dt
(s) ·

√
(dfx

dr

∣∣∣∣
r=r(s)

)2 +
(dfy

dr

∣∣∣∣
r=r(s)

)2

where s ∈ S.

The absolute Euclidian and equi-affine curvatures are calculated at points along S using the standard

equations:

R−1(s) = κ(s) =

∣∣∣∣∣∣∣

dfx

dr ·
d2fy

dr2 − d2fx

dr2 · dfy

dr((
dfx

dr

)2 +
(dfy

dr

)2
)3/2

∣∣∣∣∣∣∣

and

κ1(s) =

∣∣∣∣∣
4
(

d2fx
dr2 ·

d3fy

dr3 − d3fx
dr3 ·

d2fy

dr2

)
+
(

dfx
dr ·

d4fy

dr4 − d4fx
dr4 ·

dfy
dr

)

3
(

dfx
dr ·

d2fy

dr2 − d2fx
dr2 ·

dfy
dr

)5/3 − 5
(

dfx
dr ·

d3fy

dr3
d3fx
dr3 ·

dfy
dr

)2

9
(

dfx
dr ·

d2fy

dr2 − d2fx
dr2 ·

dfy
dr

)8/3

∣∣∣∣∣

where all the derivations are taken at the point r(s).

The Euclidian, equi-affine and affine velocities at the S points are calculated according to equation

7 in the main paper. For the calculation of the minimum-jerk velocity we used the Matlab function

”lsqnonlin”. As input the function receives any parameterization and a function calculating the jerk for

that parameterization. The output of this function is the parameterization with the smallest jerk at the

points of S.
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D.3 Geometrically combined velocity

Using equations 7 in the main paper, the theoretical velocity is defined by the function

vT (s) = v0(s)β0(s) · v1(s)β1(s) · v2(s)β2(s) =

= C0
β0(s) · C1

β1(s) · C2
β2(s) · κ(s)−

β0(h)+β1(s)
3 · κ1(s)−

β0(s)
2 (S37)

where β0, β1 and β2 are continuous functions, such that β0(s) + β1(s) + β2(s) = 1 for all s and C0, C1

and C2 are the constant affine, equi-affine and Euclidian velocities, respectively.

Finding the β functions

Here we describe in greater detail the method we have developed to calculate the values of the different

β functions.

Equation (S37) can be represented in the logarithmic space as:

log vT = c + (1− β2) log(κ−1/3) + β0 log(κ−1/2
1 ) (S38)

where c = log(C0
β0 · C1

β1 · C2
β2).

Then, the functions β0(s), β1(s) and β2(s) are constant along a segment L of the curve γ(s) if and

only if the curve

δ(s) =
(
log ve(s), log(κ(s)−1/3), log(κ1(s)−1/2)

)
on L represents a straight line in R3 with slopes 1 + β2

and β0, where ve is the experimental velocity.

We can construct the β functions by finding the values of the functions on all the segments for which

the β-s are constant and when two nearby segments are connected using a smooth interpolation. We call

this technique of constructing the β functions ”AvEAvE”.

However, in many cases there are only a very small number of segments for which all the β-s are simulta-

neously constant. We estimate the values of the β-s only by connecting two constant segments that may

be far apart from each other. This leaves us with a large number of curve segments for which we do not

have any information.

Another option is to assume that one of the β-s equals zero on the entire curve and to look for segments

where the other two β-s are constant.
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Using β2 = 0 in equation (S38), we get

log
vT2

κ−1/3
= c2 + β0 log(κ−1/2

1 )

where c2 = log(C0
β0 · C1

β1).

Hence, we can find all the segments, L2, where the curve

δ2(s) =
(
log( ve(s)

κ(s)−1/3 ), log(κ1(s)−1/2)
)

represents a straight line in R2. The slope of δ2 is the value of β0

within the segment. Again, we estimate the value of β0 on the rest of the curve by spline interpolation

and β1 = 1− β0. We call this technique of constructing the β functions ”AvEA”.

Using β1 = 0 in equation (S38), we get

log vT1 = c1 + β0 log(κ−1/3 · κ−1/2
1 )

where c1 = log(C0
β0 · C2

β2). Hence, we can find all the segments, L1, where the curve

δ1(s) =
(
log(ve(s)), log(κ(s)−1/3κ1(s)−1/2)

)
represents a straight line in R2. The slope of δ1 is the value of

β0 within the segment. Again, we estimate the value of β0 on the rest of the curve by spline interpolation

and β2 = 1− β0. This technique of constructing the β functions we call ”AvE”.

By assuming that β0 = 0 we obtain from equation (S38) the equation:

log vT0 = c0 + β1 log(κ−1/3)

where c0 = log(C1
β1 · C2

β2). Hence, we can find all the segments, L0, where the curve

δ0(s) =
(
log(ve(s)), log(κ(s)−1/3)

)
represents a straight line in R2. The slope of δ0 is the value of β1

within the segment. Again, we estimate the value of β1 on the rest of the curve by spline interpolation

and β2 = 1− β1. This technique of constructing the β functions is called ”EAvE”.

The last technique uses the results from the combination of the two velocities to estimate the remaining

β function. Equation (S37) can be written as

vT (s) = vTi(s)1−βi(s) · vi(s)βi(s)
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where vTi is the theoretical velocities calculated by the ”AvEA” technique for i = 2, ”AvE’ technique for

i = 1 and ’EAvE’ technique for i = 0. To estimate the function βi(s) we look for segments of the curve

δCi(s) =
(
log( ve(s)

vT i(s)
), log( vi(s)

vT i(s)
)
)

that represent a straight line in R2. The velocity profiles we obtain

using this method we call ’Ev(AvEA)’ when i=2, ’EAv(AvE)’ when i=1 and ’Av(EAvE)’ when i=0.

The constant velocities, C0, C1 and C2 are considered constant throughout an entire trial. We choose

those constants which give the best AIC with respect to the experimental velocity.

Finding segments of straight lines

Let δ(s) =
(
x(s), y(s)

)
be a curve in R2. Let L be the set of the segments in δ that represent straight

lines.

As the first step for each point, b ∈ δ, we calculate the best β values for the point within an interval

of 25 points; that is by using a sliding window and associating the point b with 25 different intervals,

each of a size 25 points. We choose β as the slope of the straight line which achieves the best R2 score

among these intervals when using a linear regression.

In order for a segment l to belong to L, all the points in l need to have a higher R2 score than a

threshold value of 0.97, and must be associated with a unique straight line, that is, have the same slope.

The slope, β(s), is considered the same for all the points belonging to l if dβ
ds for s ∈ l is smaller than

some threshold. The threshold for the sensitivity in the variation in β that we have employed was 0.05

for locomotion and 1.0 for drawing. Moreover, because the slope represents β0, β1 and β2, it must lie

within the interval [0, 1]. In this procedure we have only considered long enough segments l within L. A

segment is considered long enough if it includes at least 30 points. In addition, two segments l1, l2 ∈ L

are replaced with one large segment, l, which is composed of both of them, if they are close enough to

each other and of the difference between their slopes is small.

Handling singularities

A singularity is a point where the Euclidean curvature equals zero, that is an inflection point or a

point where the equi-affine curvature equals zero, that is a parabolic point. Near an inflection point the

equi-affine velocity tends to infinity and the affine velocity tends to zero. In this case, equation (S37)

tends to zero or infinity in most of the combinations of the β − s. There are two cases where this does
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not happen: when β2 = 1 and β0 = β1 = 0 and when the affine and equi-affine velocities cancel each

other out, i.e. when β0 = 0.25 β1 = 0.75 and β2 = 0 (See section A.3). Near parabolic points the affine

velocity tends to infinity and equation (S37) tends to infinity unless β0 equals zero.

Considering that β − s values are chosen only for parts of the curves and we interpolate their values

in the rest of the curve, the values of the β− s on singularities may be chosen depending on the segments

around them. To prevent the theoretical velocity of equation (S37) from going to infinity or zero around

singularities, the values of the β − s near the inflection points are set β0 = 0.25, β1 = 0.75 and β2 = 0,

and near parabolic points we set β0 to equal zero.

D.4 Expanded results

Figures S4 and S5 show comparisons between experimentally recorded and theoretically predicted tra-

jectories for drawing and locomotion, respectively. Comparing the experimental velocity to the constant

equi-affine velocity and to the constant affine velocity shows that, for parts of the curves, the experimental

velocity follows the constant equi-affine velocity more closely, while in other parts it is more influenced

by the constant affine velocity (see Figures S4 and S5, for examples). In addition, it can be seen that

both of these velocities are necessary to describe the experimental velocity.

From equation (S37) we can see that the β functions describe the extent to which each geometry

influences the combination velocity, vT , at every point on the curve. Figures S6 and S7 display examples

of the best combination velocity compared with the experimental velocity, i.e., the β functions giving the

best AIC score for comparing the combination velocity and the experimental velocity using the meth-

ods described in section D.3 to construct the β functions. The colors on the path in Figures S6A, D,

and G and S6A, D, and G represent the weights of the different geometries representing the changes in

dominance of the various geometries along the different paths. The full range of colors and their relation

to the values of β0, β1 and β2 can be seen in Figure S8. Figure S6 gives the combination velocity and

the β functions for one repetition of the different curves for the drawing data. Figure S7 shows the

combination velocity and the β functions for one repetition of the different figural forms for the M-point

of the locomotion data. The R2 score for the combination velocity, calculated over the entire trial and

not only for the displayed repetition, is marked on the velocity figures.
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AIC AIC AIC AIC Probability
Exp Shape of EA of A of Combination of Min-jerk Comb v Min-jerk

C1 601±129 1414±231 528±171 634±145 1±0
C2 703±64 1336±68 488±138 577±160 0.95±0.13
C3 831±68 1521±150 755±280 692±179 0.55±0.52
L1 1441±791 1507±836 1168±908 1259±882 0.78±0.44

Drawing L2 1317±95 1195±94 819±124 940±160 0.78±0.44
L3 1414±70 1182±89 787±224 1014±146 1.00±0.00
A1 2206±70 2695±96 742±134 751±108 0.49±0.53
A2 2206±74 2674±36 976±104 823±77 0.00±0.00
A3 2274±70 2682±57 1205±88 992±110 0.00±0.00
C 4238±698 6083±1358 4203±632 4452±577 0.79±0.41
L1 5211±821 6891±1065 4870±893 5434±750 0.93±0.27
L2 5452±901 7969±1220 4950±1224 5813±815 0.91±0.28

Locomotion L3 6703±1326 8165±1637 6015±1373 6445±1209 0.73±0.45
M-point A1 6895±968 7596±962 5240±1151 5302±1093 0.56±0.50

A2 6546±657 7350±797 4881±643 5024±505 0.67±0.47
A3 6696±934 7582±1022 4706±694 5102±647 0.93±0.26
C 3959±493 5085±1175 3891±473 3906±477 0.70±0.48
L1 4816±1464 5746±1251 4861±1311 5035±1176 0.89±0.33
L2 5114±828 6863±1171 4718±674 5375±697 0.93±0.27

Locomotion L3 6282±1693 7586±1178 5313±1605 5710±1387 0.83±0.39
R-point A1 6485±1278 7163±1102 5126±1929 5382±1752 0.73±0.46

A2 6148±618 7112±630 4200±876 4640±741 0.95±0.22
A3 6398±1456 7016±1285 5382±2090 5476±1805 0.62±0.51

Table S1. The AIC scores of the different models for the different shapes.
The means and SD values of the AIC scores of the pure equi-affine and affine geometries, the
minimum-jerk model and the combination of Euclidian, equi-afine and affine geometries model. The
AIC score is based on the level of the error, hence, the lower the AIC score, the better the model. The
probabilities for every figural form that the combined velocity model is better than the minimum-jerk
model is calculated according to the equation: p = e−0.5∆AIC/(1 + e−0.5∆AIC).

Table S1 contains the AIC scores of the different models and shapes for the drawing data and for

the locomotion data for both the M and R points. The AIC results and the mean of the different β

functions for the R-point are shown in Figure S9. These results show no significant difference from the

results obtained with the M-point.

We calculated the mean of the functions β0, β1 and β2 for trials with good approximation of the

recorded velocity by the combination velocity, i.e., R2 ≥ 0.6 (see Figures S9 here and 8 in the main

paper). Comparing the means of β2 for the drawing data versus the locomotion data for both the R and
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C L1 L2 L3 A1 A2 A3

β0 * * * *
β1 * * * * *
β2 * * * * * * *

Table S2. Significant differences between the β functions of drawing and locomotion.
Stars represent the figural forms and β functions for which there was a significant difference between
the mean values of the β functions for drawing versus locomotion (using the M-point). Every column
represents a different figural form, where the cloverleaf is marked by C. The marking L1,L2,L3 and
A1,A2,A3 represent the limaçon and the lemniscate templates, respectively, according to the ascending
ratio of the large to the small loops.

M points (using Wilcoxon rank sum test) reveals that locomotion data for all the figural forms are more

Euclidian than the drawing data for these forms (p < 0.005), except for the cloverleaf using the R-point

(see table S2).

The oblate limaçons are more affine in drawing than in locomotion, but the mean value of β0 for the

asymmetrical lemniscate is close to zero for both drawing and locomotion. For the cloverleaf we compared

the locomotion data to the C2 shape, that is, the cloverleaf performed at medium speed.

The mixed ANOVA test on the drawing data shows significant differences among the means of the β

functions of the different shapes (p < 0.0001 for β0, p = 0.0035 for β1 and p = 0.0004 for β2), whereas

among the subjects there are no statistically significant differences (p > 0.7 for all the βs).

Figure S10, first column, gives the means of the β functions for the drawing data of all the subjects

for the different figural forms. Every subject is represented by a different color.

Compare the loops

For the oblate limaçons and asymmetric lemniscates we compared the means of the β functions for

the different loops using Wilcoxon rank sum test. As in the analysis of the β functions for the different

shapes, we considered only trials with R2 ≥ 0.6. See Figure S11.

We found no statistically significant difference among the values of the β functions on the small vs.

large loops of these curves for all the different types of drawn oblate limaçons. On the other hand, con-
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sidering the M-point in locomotion, we found that in the case of L2 the large loops were more Euclidian,

less equi-affine and less affine than the small loops. The mean value of β2, β2, was 0.43 on the large loops

and 0.22 on the small loops. For the M-point the mean value of β1, β1, varied between 0.54 on the large

loops to 0.7 on the small loops and the mean value of β0, β0, increased from 0.02 for the large loops to

0.07 for the small loops. The same kind of change was found for the R-point, but with less statistical

significance. In the case of L1 there is only a difference for β2. As with L2 the outer loops were more

Euclidian than the inner loops (this difference is not significant with the R-point).

Remark: For L3 of locomotion, some subjects generated very small inner loops which were impossible

to separate appropriately from the large loops. Hence, we did not calculate the means of the β functions

on the different loops of L3.

With asymmetric lemniscates, for A1, there is no difference between the values of the means of the β

functions for drawing and locomotion, as expected. In the case of A1, the size of the upper loops equaled

that of the lower loops.

The values of β0 and β2 are directly related to the size of the loops in locomotion for A2 and A3. The

influence of Euclidian geometry, β2, changed from 0.38% − 0.39% on the small loops to 0.54% − 0.56%

on the large loops (M-point). The changes in the influence of affine geometry as expressed by the val-

ues of β0 were smaller but still statistically significant, changing from 0.07 on the small loops to 0.1 on

the large loops for the A2 shape and from 0.06 on the small loops to 0.09 on the large loops for the

A3 shape. On the other hand, the influence of equi-affine geometry deceased from 0.54 − 0.55 on the

small loops to 0.35−0.36 on the large loops (M-points). The same tendency can be seen with the R-points.

In drawing, as in locomotion, β0 increases from the small loops to the large loops in A2 and A3.

However, unlike locomotion, in drawing the values of β2 expressing the Euclidian influence did not

change for A2 (β2 = 0.13) and decreased from 0.2 on the small loops to 0.16 on the large loops in A3.

A small statistically significant difference can be seen between β1 of 0.79 on the small loops and 0.75 on

the large loops for A2. There were no differences in the values of β1 for A3.
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E Third test: complex forms: timing

E.1 Proportion and segmentation

Our goal now is to indirectly test geometric segmentation of trajectories.

Let us consider a regularly connected trajectory Γ, which is closed and is sufficiently well practiced

to insure a typical behavior during its generation. We suppose that the velocity on Γ is never zero and

that it is continuous. We also assume the following hypothesis which we call mixed monotony:

Γ is composed of three parts, Γ0, Γ1 and Γ2. On Γ0 time is proportional to the affine parameter σ, on Γ1

it is proportional to an equi-affine parameter σ1 and on Γ2 it is proportional to an Euclidian arc-length

s. This is mathematically expressed by: ∆t0 = C0∆σ,∆t1 = C1∆σ1,∆t2 = C2∆s, where C0, C1, C2 are

globally constant on each piece Γ0, Γ1 and Γ2, respectively.

Roughly put, Γ0 is the affine part of Γ, Γ1 is its equi-affine part and Γ2 is its Euclidian part. However,

we do not suppose that Γ2 consists of segments of straight lines nor that Γ1 consists of parabolic arcs.

But in order to define σ on Γ0 and σ1 on Γ1, we must assume that Γ0 does not contain inflection or

parabolic points and that Γ1 does not contain inflection points.

Let Λ′,Λ” be two sub-parts of Γ such that there is a planar affine transformation χ with χ(Λ′) = Λ”.

Let us denote by T ′0, T
′
1, T

′
2 and T”0, T”1, T”2 the time spent on the respective intersections Λ′0, Λ

′
1,Λ

′
2

and Λ”0, Λ”1, Λ”2 of Λ′ with the three pieces of the partition Γ0, Γ1, Γ2 of Γ. Also let us denote by L′2, L”2

the lengths of Λ′2 and Λ”2 and by A′1, A”1 the total sum of areas enveloped by Λ′1,Λ
′′
1 and their chords.

Then, from the invariance properties of the canonical parameters shown in the mathematical appendix,

our hypothesis of local monotony implies the following scaling behaviors:

T”0

T ′0
= 1,

T”1

T ′1
= [

A”1

A′1
]1/3,

T”2

T ′2
=

L”2

L′2
. (S39)

Remark: by using the infinitesimal form of these conditions we can reciprocally deduce the hypothesis of

mixed monotony.
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Now consider a global affine transformation α. Let us apply it to the entire curve Γ, and let us assume

that the image Γ′ = α(Γ) is accordingly segmented and also satisfies local monotony. This implies pre-

cisely that on the three trajectories Γ′0 = α(Γ0),Γ′1 = α(Γ1),Γ′2 = α(Γ2) respectively, the motion should

be affine, equi-affine and Euclidian monotonic. Then, under this hypothesis, we have the following lemma

concerning the ratios of the times spent along the different parts of Γ and Γ′:

Lemma 1.

Γ0 is non-empty. Suppose that α is a translation or a similarity transformation, i.e., it transforms all

lengths by the same ratio. Then, by denoting by T0, T1, T2 and by T ′0, T
′
1, T

′
2 the times spent on corre-

sponding parts in Γ and Γ′, we have: T ′2/T2 = T ′1/T1 = T ′0/T0. In other words, the ratios of the total

times dedicated to the three different geometries are invariant to scaling by size.

Proof : In what follows, the index α is generally used to mark items on the transformed curve. For

simplicity, we denote the norms ‖−→V ‖ of velocities
−→
V by the letter V .

If λα is the dilatation factor of the transformation α, for any point M on Γ we have ‖α(
−−−→
V (M))‖ =

λαV (M).

We first prove that if Λ is a connected component of Γ0, Γ1 or Γ2 and if P is one of the extremities of Λ,

then the ratio Tα/T of the times spent respectively on α(Λ) and Λ is equal to the ratio λαV (P )/V (α(P )).

Let us denote by Dα this ratio λαV (P )/V (α(P )). Let Λ2 be an Euclidian connected part inside Γ2

with extremities P, Q. We know that V is constant along Λ2 and Vα is constant on α(Λ2). Then by

continuity of the velocities, for any point M on Λ2 we have λαV (M) = DαVα(M).

Let us denote the lengths of Λ2 and α(Λ2) by L and Lα respectively, and the total times spent along

them by T and Tα. We obtain Lα = λαL and λαTα/Lα = DαT/L, thus Tα = DαT .

The argument on an equi-affine segment Λ1 inside Γ1 meeting Λ0 or Λ2 in one of its extremities is

analogous, with the enveloped areas replacing the generated distances:

Let P be the extremity where we already know that λαV (P ) = DαVα(α(P )). Denote by µα the absolute

value of the determinant of α. Let σ1 be the standard equi-affine parameter on Λ1 at P . Then, on Λ1
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we have ∆t = C1∆σ1 for some positive constant C1. We know that the standard equi-affine parameter

on α(Λ1) is given by

σ1,α(α(M)) = µ−1/3
α σ1(M), (S40)

at every point M of Λ1.

We obtain
dσ1,α

dtα
=

µ−1/3

Dα

dσ1

dt
. (S41)

In another respect we also have ∆t′ = C ′1∆σ1,α for some positive constant C ′1. We deduce

C ′1 = µ1/3DαC1. (S42)

Now we are able to compute ratios of times T and T ′ spent on Λ1 and its image α(Λ1) respectively:

T ′ = C ′1∆σ1,α

= C ′1µ
−1/3∆σ1

= C ′1µ
−1/3C−1

1 T

= DαT.

(S43)

If Λ is a piece of Γ0, where it is known that on an extremity P we have λαV (P ) = DαVα(α(P )), then

on this segment ∆tα = Dα∆t, and it follows that T ′/T = Dα too.

Now the proof can be ended by recurrence. As before we demonstrate piece-by-piece that the ratio

T ′/T of times on corresponding segments Λ and Λ′ in Γ and Γ′ equals the same constant Dα.

Finally, by summation, we obtain the desired relationships, namely:

T ′2/T2 = T ′1/T1 = T ′0/T0. (S44)

(Here we used the fact that a/b = c/d implies (a + c)/(b + d) = a/b too.) Note the consequence: without

assuming the same values for the constants C0 on the different components of Γ0 we have obtained that

Dα is the same for all of them.
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The spirit of the demonstration is simple: the initial condition at P allows removing the ambiguity

regarding constants over Γ2, Γ1 and Γ0.

The following result opens the way to a very testable law:

Theorem

Suppose we have a closed monotonic connected trajectory Γ as before, and that Γ is a reunion of two

closed parts Γ′, Γ”; then there exist 3 non-negative constants B0, B1, B2, that depend only on Γ′ and are

invariant under similarity transformation of Γ′, such that B0 + B1 + B2 = 1, and

T”
T ′

= B0 + B1[
A”1

A′1
]1/3 + B2

L”2

L′2
, (S45)

where T”, T ′ mark the times spent on Γ”, Γ′, also A”1, A
′
1 mark the sum of areas enveloped by the equi-

affine parts Γ”1,Γ′1 and L”2, L
′
2 mark the lengths of the Euclidian parts Γ”2,Γ′2.

Proof : Let us represent the segmentation as follows: Γ′ = Γ′0 + Γ′1 + Γ′2 and Γ” = Γ”0 + Γ”1 + Γ”2,

we have an evident repartition of time:

T”
T ′

=
T”0 + T”1 + T”2

T ′0 + T ′1 + T ′2
, (S46)

and we deduce by monotony:
T”
T ′

=
T ′0 + T ′1[

A”1
A′1

]1/3 + T ′2
L”2
L′2

T ′0 + T ′1 + T ′2
, (S47)

which gives:
T”
T ′

=
T ′0
T ′

+
T ′1
T ′

[
A”1

A′1
]1/3 +

T ′2
T ′

[
L”2

L′2
]. (S48)

Now the theorem follows from the preceding lemma because it asserts that the fractions T ′0/T ′, T ′1/T ′,

T ′2/T ′ are independent of the scale of the curve Γ′.

Corollary

When there exists a similarity transformation ϕ of ratio ρ such that ϕ(Γ′) = Γ” that respects the
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segmentation, the following formula is true:

T”
T ′

= B0 + B1ρ
2/3 + B2ρ. (S49)

Proof : We obtain this result because ϕ sends Γ′0, Γ
′
1, Γ

′
2 onto Γ”0,Γ”1, Γ”2 respectively, and the factor

of dilatation for areas is the square of the factor for dilating the lengths.

Note that if we consider a sequence of curves Γ(n), n = 1, 2, ..., N , decomposed as above into two parts

Γ′(n), Γ”(n), which comply with the assumptions of the corollary with ratios ρ(n), n = 1, 2, ..., N , and such

that all the Γ′(n), n = 1, 2, ..., N are similar to a fixed Γ′, we get for n = 1, 2, ..., N :

T”(n)

T ′(n)

= B0 + B1[ρ(n)]2/3 + B2ρ(n), (S50)

with constants B0, B1, B2 which are independent of n satisfying B0 + B1 + B2 = 1.

This is the expected simple law that segmentation gives for the proportion of movement durations.

E.2 Data recording and processing

The data for testing our predictions regarding the durations of the different segments are those used in

the section examining the different models of velocity prediction (see section D.1).

To obtain the lengths of the different loops in the asymmetric lemniscate (Figure S2A) or the oblate

limaçon (Figure S2B) for both the drawing and locomotion data, points P1 and P2 in Figures S2A and

S2B, respectively, were manually detected. The sampling indices when entering and leaving the small

loop of the oblate limaçon or the intersection point in the asymmetric lemniscate were derived. Based

on these values the Euclidian lengths and movement durations of the two loops of these shapes were

accordingly calculated. To achieve greater accuracy, for locomotion this analysis was applied to the raw

position data before smoothing.
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