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Supporting Text 1 

Application of the equi-affine geometry and minimum-jerk 

modeling to analysis of movement kinematics 

Here we describe the procedure for numerical modeling of the trajectories satisfying 

the constrained minimum-jerk model and compare the modeled movements with the 

recorded data. We also use equi-affine speed to estimate the fit of the measured and 

predicted movements to the two-thirds power law model. We found that the temporal 

course of the monkeys' movements deviated from the prediction of the constrained 

minimum-jerk model; however the model successfully captured the locations on the path 

at which the tangential velocity achieved extremal values. The fit of the predicted 

trajectories to the two-thirds power law improved with the amount of practice the 

monkey had, which is not the case for the actual recorded trajectories. 

The notions of equi-affine geometry and the rationale for its application in motor 

control studies are described elsewhere [22-25, 27, 32, 33]. Here we provide essential 

definitions, explanations, and methods of analysis of movements’ kinematic parameters. 

An English translation of the relevant material from [32] can be found in [25] (Appendix 

A). 

Essential notions of the planar equi-affine differential geometry 

Planar affine transformations,  

,where,
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which are constrained by the condition 1det �A , are called equi-affine transformations. 

These include a linear part defined by 3 independent terms appearing in the matrix A ; 

where the fourth term depends on the other 3, provided  that 1det �A . It also includes 

translation components a  and b . The variables x  and y  are coordinates of a point 

located along a planar curve, and 
*

x and *
y  are the coordinates of the same point 

following the equi-affine transformation. The condition on the determinant means that 

the area contained within any closed curve is preserved under equi-affine 

transformations; these transformations are therefore also called area-preserving. The set 

of Euclidian transformations consists of rigid rotations and translations that preserve 

Euclidian distance and curvature, and constitutes a particular subset of equi-affine 

transformations. An equi-affine transformation can be applied to all the points along a 

curve. The Euclidian length of a curve and its Euclidian curvature are modified 

accordingly. However the equi-affine arc-length and the equi-affine curvature, defined 

below, remain the same.  

For a twice differentiable planar trajectory described by the vector function 

� � � � � �� �tytxt ,�r , the equi-affine velocity, which is equal to the time derivative of the 

equi-affine arc-length � , is invariant under equi-affine transformations and is expressed 

as follows [32, 33]: 

� � � � � � � � � �3 txtytytxt ������� ��� . (S1) 

Here and elsewhere, a dot above a symbol denotes a time derivative and boldfaced 

symbols signify vector quantities.  

It equals the cubic root of the area of the parallelogram defined by the vectors of the 

movement velocity and acceleration and is invariant under equi-affine (area-preserving) 
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transformations. Similarly, the well-known formula 22 yxs ��� �� for the Euclidian speed 

of motion is invariant under the action of the group of Euclidian transformations 

(rotations and translations). Equi-affine length �  can be computed either by integrating 

equi-affine velocity (S1) over time or based on Euclidian invariants as the integrated 

Euclidian length s  weighted by the cubic root of the Euclidian curvature c : 

� � � �� �
dssct

tL

��
0

3/1� , 
 

where L  is the Euclidian length of the trajectory  at  time t .   

For a trajectory � �tr  having no inflection points (where the Euclidian curvature is 

zero), and parameterized by the equi-affine arc length �  (called natural 

parameterization), a derivative w.r.t. �  is denoted by a prime � �� �� ���� �� //' xdtdxx �� , 

where � ��t  corresponds to the movement duration during which an equi-affine distance 

�  (mm
2/3

) of the path is drawn. Given that for an equi-affine transformation 1det �A  

(see equation 1 above), the condition for an equi-affine parameterization is: 

.1'''''' �� xyyx  (S2) 

Equation (S2) corresponds to the area spanned by the equi-affine tangent � �r�  and by the 

equi-affine normal � �r ��  to the curve. Note that the expression in equation (S2) is equal 

to the outer product and not to the scalar product of the two vectors. Differentiation of 

equation (S2) with respect to �  shows that the vectors corresponding to the first and 

third derivatives of the position vectors are parallel to each other and thus can always be 

related to each other by some scalar � : 

0������ rr � , (S3) 
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with the proportionality coefficient �  obtained from equations (S2) and (S3) being 

expressed as 

� � '''''''''' xyyx ���� .  

The coefficient �  is the equi-affine curvature of a curve [32, 33], which is another 

equi-affine invariant. Curves having the same equi-affine curvature can be aligned by 

using some equi-affine transformation [32]; therefore equi-affine curvature can be used 

for curve classification in equi-affine geometry. 

Curves having a constant equi-affine curvature are the conics (the ellipse, parabola, 

and hyperbola). Parabolas have zero equi-affine curvature. Therefore any parabolic stroke 

can be uniquely associated with any other parabolic stroke, whenever the two strokes 

have the same equi-affine length [27, 30]. For this reason any parabolic segment can be 

obtained from an arbitrary parabolic template by an affine transformation (composed of a 

unique uniform spatial scaling – adjusting the equi-affine length – and a unique equi-

affine transformation). The equi-affine curvature of an ellipse is a positive constant 

defined only by its enclosed area A : � � 3/2
/ A�� �  [34]. 

The constrained minimum-jerk model predicts maximally smooth movements in the 

jerk sense for a given movement path [4]; more details are provided in the next section. 

Predictions of the constrained minimum-jerk model and the two-thirds power law model 

for a given path are generally different. They are equal only for curves satisfying the 

following equation [25, 27]: 

� � � � � � � � const'2'2''2''2'''''' 554422 ������ yyxxyyxxyx , (S4) 

which is equivalent to � � � � 0'' 66 �� yyxx  for smooth enough curves. Here the prime 

denotes differentiation with respect to � , and numbers in brackets denote the 
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corresponding  order of differentiation with respect to � . Parabolas constitute the only 

class of equi-affinely invariant solutions of this equation [25, 27].   

 

Actual and predicted trajectories 

Let � � � � � �� �sysxs ,�r  be a planar curve describing the path of the hand during a 

particular trial, where s is the Euclidean distance along the path and � �ts�  is the hand 

tangential velocity. The constrained minimum-jerk model [4] assumes that the law of 

drawing a given geometric path during movement duration T  is defined by the scalar 

function � �ts  which minimizes the integrated jerk, namely 

� �� � � �� �� �dttsytsxJ

T

� ��
0

22

2

1
������ . 

(S5) 

The optimization procedure described below was aimed to find a prediction of the 

constrained minimum-jerk model or, alternatively, a speed profile � �ts�  that minimizes the 

cost (S5). The optimal trajectory is constrained by a prescribed path � � � �� �sysx ,  and the 

total duration T of a movement segment. No constraints were imposed on the velocity or 

acceleration at the segment boundaries as we seek for predictions along movement 

segments (by definition, the monkeys’ hand velocity was always non-zero along the 

movement segments, see Methods).  

A classical minimum-jerk trajectory for moving from rest to rest passing through a 

single via-point (3 points constrain the task instead of the entire path) can be very well 

approximated by a parabola, though it is not an exact parabola [25, 27]. The constrained 
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minimum-jerk model predicts movements with constant equi-affine speed, that is 

satisfying the two-thirds power-law model, for parabolic paths.  

Given a sequence of recorded samples along the path of a movement segment, 

� �ii yx , , Ni ,,1�� , the predicted time intervals of traveling between adjacent samples 

� �11 ,, ���� N
ppp

tt ��t  with �
�

��
1

1

N

i
p Tt � must be estimated to define a trajectory 

minimizing the jerk along that path. Once samples along a movement path and time 

increments were obtained, the sample-wise components of the jerk cost were calculated 

by means of the following Matlab code: 

function J = Jerk (X, Y, Dt) 

DtAcceleration = 1/2 * (Dt(1:end-1) + Dt(2:end)); 

DtJerk = 1/4 * Dt(1:end-2) + 1/2 * Dt(2:end-1) + 1/4 * Dt(3:end); 

VelX = diff[X] ./ Dt; VelY = diff(Y) ./ Dt; 

AccX = diff(VelX) ./ DtAcceleration; AccY = diff(VelY) ./ DtAcceleration; 

jerks_X = diff(AccX) ./ DtJerk; jerks_Y = diff(AccY) ./ DtJerk; 

J = 1/sqrt(2) * [jerks_X .* sqrt(DtJerk); jerks_Y .* sqrt(DtJerk)]; 

Finally, the jerk cost (S5) can be approximated with the squared norm of J: sum(J .* J). 

The time increments were adjusted during the process of cost minimization 

implemented with the Matlab (Mathworks) function "lsqnonlin" from the Optimization 

toolbox. The function was run with the large-scale algorithm provided by the toolbox. 

The initial guess for the time increments was taken from the recorded trajectory: i
a

t� = 

1/(Recording frequency); 1,,1 �� Ni � .  

The predicted time instants � �0, 11
1

1 ����� �
�

api

k
k

p
i

p
tttt  for moving through the 

specified recorded positions 1�ir , did not precisely match the recorded time instants 1�i
a

t = 
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i / (Recording frequency). A non-trivial time-warping relationship between the actual and 

predicted trajectories was needed to align the predicted and measured time courses and is 

defined as follows: 

� �0,,,1, 1 ����� Ni
a

i
p

i wwNittw � �� (S6) 

We show below that the predicted trajectories differ from the actual trajectories. 

 

 

Estimates of the fit to the constrained minimum-jerk model and to the 

two-thirds power law 

For each movement segment, the goodness of fit of the recorded trajectory to the 

trajectory predicted by the constrained minimum-jerk model was estimated based on 

time-warping between the two trajectories as follows:  

� �
� ��
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�
�
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(S7) 

with a

i

p

ii ttw ��  from (S6). The part of this formula in square brackets represents the 

deviation between the actual and predicted time-courses. The time-course is a strictly 

increasing function; thus the possible cumulative difference between the actual and 

predicted time-courses cannot be larger than � � 2/1 TN � , which is set to constitute 100% 

of the cumulative deviation in the square brackets in (S7).  

Now we explain formula (S7) in more detail. Let us use the following notation: 

� �1/ ��� NTt , which is equal to the time-interval between consecutive recorded samples 

of the actual trajectory. The second term in square brackets corresponds to two time 

intervals � �2/,0 t�  and � � � �� �tNTN ����� 1,2/12  of duration 2/t� each, whereas the 
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first term corresponds to the time interval � �� �tNt ���� 2/12,2/  of duration � �tT �� . 

We interpolate linearly between 1w  and 2w  to find the value of w  at the point 4/t� in 

the middle of the time interval � �2/,0 t� . Given that 01 �� Nww , the result of such linear 

interpolation is equal to 4/2w . Numerical integration of this constant value over the 

interval � �2/,0 t�  results in the term 8/2 tw � . The value 8/1 twN ��  is obtained similarly 

for the time-interval � � � �� �tNtN ����� 1,2/12 . Given that the sequence of predicted 

time course p

it  increases with i  but never exceeds  T  and that 01 �� Nww , we conclude 

that the total maximal possible difference between the actual and predicted time-courses 

( w ), integrated over the movement duration is equal to half the area of the squared time 

interval T: � �� � � � 2/12/1
2

TtNtN ����� . This maximal possible value is set as 100% 

and is used in the normalization of the deviation between the time-courses of the recorded 

and predicted trajectories. The term t�  is cancelled by the same term which is used in the 

summation (for integration, � � � �12

1

20

8/ �

�

�

�	��	�# �� N

N

i

i

T

wwtwtdtw ) in the numerator. 

Therefore, the normalization factor is � � 2/1 TN � .  

 

The two-thirds power law establishes a relationship between geometric and 

temporal properties of hand trajectories. It assumes that the tangential velocity s�  for 

producing a given path and the Euclidian curvature c of that path are related via a piece-

wise constant gain factor K : 3/1�� cKs�  [18]. The gain factor K  in the above expression 

is equal to the equi-affine velocity of the movement trajectory, namely: 

� �Kyxyx ��� 3 �������� . Therefore, movements obeying the two-thirds power law have 
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piece-wise constant equi-affine velocity [22-24]; this property is invariant under equi-

affine transformations of the trajectory. 

The constancy of the ratio � �1111 /,,// �� ����� NN tt �� ��t��  is used to test 

whether a given trajectory complies with the two-thirds power law. Whenever the ratio 

is constant, the angle between the two multidimensional vectors is zero. Therefore, for 

each movement segment the constancy of the ratio is estimated by the angle between 

the multidimensional vectors ��  and �t : 

� ����t ,a�  for the actual trajectories; 

� ����t ,p�  for the predicted trajectories ; 

with 

� � � �
���

���t
���t

	

	
�

t
arccos,� . 

(S8) 

The smaller the angle in (S8), the closer the equi-affine speed is to being constant for a 

given movement segment and therefore the better the fit to the two-thirds power law. 

 

Regularization of ��  

Numerical calculation of the equi-affine parameters is sensitive to noise in the 

original data because high-order derivatives are used. Therefore, these parameters 

occasionally show large fluctuations between adjacent samples. We introduce a regularity 

criterion for the magnitude of the increments of the equi-affine arc-length ��  between 

adjacent samples on a movement path. The criterion is based on the proximity of the 

neighboring values of �� . As is illustrated in Figure S2, a block of data is considered 
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regular whenever it contains a sufficient number (at least 5) of consecutive ��  that are 

close enough to their neighbors (0.075 mm
2/3

 or less). The data analysis, which involved 

equi-affine speed, was performed on those parts of movement segments satisfying the 

regularity conditions for �� . 

 

Example: parameters analyzed for a single movement segment 

Equi-affine geometry, the two-thirds power law and the constrained minimum-jerk 

model were used to mathematically infer that parabolas are candidate movement 

primitives. We next describe the properties of the equi-affine curvature of the monkey 

scribbling movements and how well these movements fit the two-thirds power law and 

the constrained minimum-jerk model. First, we use one movement segment scribbled by 

monkey O to describe in detail the parameters involved in the data analysis presented 

below. 

The segment path (Figure S3A) is smooth and consists of several repetitions of the 

same piece-wise parabolic pattern. Figure S3B shows the actual and predicted time-

courses versus path samples. Their difference defines the time-warping needed for the 

recorded trajectory to obey the constrained minimum-jerk model. 

Figure S3C shows the speed profiles of the actual and predicted trajectories. For 

the actual trajectories, the sampling interval is proportional to time due to the constant 

recording frequency. For the predicted trajectories, however, the time taken to pass 

between the pairs of consecutive samples is not constant. Hence, we plotted a single 

profile for the actual speed and two profiles for the predicted speed: one was plotted as 
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a function of time and the other as a function of the sample point number divided by 

recording frequency (position).  

The similarity of speed profiles (a) and (c) in Figure S3C indicates that the 

constrained minimum-jerk model accurately predicts the locations along the path drawn 

by the monkeys at which the predicted speed achieves its extremal values. However, the 

model was less successful in predicting the temporal values of these events, as profiles 

(a) and (b) indicate. The difference between the actual and predicted time-courses from 

equation (S6), which defines the time-warping relationship, is exactly the difference 

between the values along the x-axis at which the graphs (b) and (c) obtain the same 

values.  

Had the predicted trajectory obeyed the two-thirds power law, its velocity gain 

factor � � � �ttK
pp ���  should have been piece-wise constant and, hence, the sequences 

� � pp

it �t��  and � � ���� i�  should have been piece-wise proportional to each other. In 

Figure S3D, both parameters were scaled to display them on the same axis. The 

estimated predicted ( p
�t�� / ) and actual ( a

�t�� / ) equi-affine speeds were also 

appropriately scaled and plotted in Figure S3E. The scaling does not change a 

sequence’s deviation from constancy but helps to visualize it. The scaling constants are 

indicated in the legend of the plot.  

As demonstrated in Figure S3D, the scaled sequences of 
p

�t  and ��  follow the 

same phase of low frequency oscillations and have similar depths of modulation during 

each phase, disrupted by some higher frequency noise. This indicates that the predicted 

equi-affine speed p��  is closer to being constant than the actual one.  
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The legend in Figure S3E shows the deviation from a constant value estimated by 

the angle between the multidimensional vectors ��  and p
�t or a

�t  for the predicted 

and actual trajectories respectively, according to formula (S8). The deviation of the 

actual equi-affine speed from being constant is indeed larger than that of the predicted 

speed, which demonstrates that the predicted trajectory fits the two-thirds power law 

better than the actual movement. This is also generally true, as will be shown below, 

and this is consistent with the fact that an ideal fit to the two-thirds power law is 

equivalent to setting the normal component of the jerk vector r���  to zero [4]. 

The third graph in Figure S3D demonstrates the values of the equi-affine curvature 

for a movement segment. Several ‘continuous’ pieces with equi-affine curvature values 

very close to zero can be observed in the graph, indicating the possible applicability of 

the equi-affine curvature to movement segmentation. The values of the equi-affine 

curvature oscillate around zero, with the local maxima mostly positive and the minima 

mostly negative. 

 

Fit of the scribbling movements to the constrained minimum-jerk 

model 

The session averages of the deviations between the actual and predicted trajectories 

estimated by formula (S7) ranged between 4% and 9% (Figure S4A). For both monkeys 

the averages showed no tendency to converge with practice. For comparison, we 

estimated the degree to which human tracing movements fit the constrained minimum-

jerk model. Human subjects were required to trace 3 specified geometric templates –  
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double ellipses, cloverleaves and oblate limacons [19]. Average intra-shape deviations of 

the human tracing movements from the constrained minimum-jerk predictions did not 

exceed 2% [25] (see Appendix G), which means that they fitted the trajectories predicted 

by the model better than the monkey scribbling movements. However, the task of the 

monkeys was to produce spontaneous scribbling, while the human subjects had to follow 

a predefined geometrical form with a prescribed overall tempo. 

 

Analysis of scribbling movements based on the two-thirds power law and 

minimum-jerk model 

The averages of the estimates of the fit to the two-thirds power law for the actual 

and predicted time courses and comparisons between them are shown in Figure S4B, C, 

and D respectively, together with their 95% confidence intervals. Following four 

recording sessions, the fit of the predicted trajectories to the two-thirds power law 

became noticeably better, especially for monkey O, and was superior to the fit of the 

actual trajectories. The degree of fit of the predicted trajectories to the two-thirds power 

law is dictated by geometric properties of the paths, which serve as the model’s 

constraint. Therefore, improvement of the fit directly implies that the geometric 

properties of the drawn paths change with practice.  

The prediction of the constrained minimum-jerk model for parabolic segments 

(which has zero jerk cost) satisfies the two-thirds power law [25, 27], which is equivalent 

to drawing at a constant equi-affine speed. However, this is true for isolated parabolic 

segments and is not true for their sequences, because such an effect would result in an 

abrupt change in movement acceleration and thus in high values of jerk. Indeed, the 
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accelerations of both the actual and predicted movements were not constant. Whether 

drawing near piece-wise parabolic trajectories (whose paths are sequences of parabolic-

like strokes) according to the two-thirds power law is advantageous over other shapes in 

terms of the jerk cost is a question for further investigation. The transition between 

adjacent parabolic segments follows a nearly straight path (e.g. as in Figure S3A), i.e., the 

only path besides a parabola for which the minimum-jerk prediction has minimal possible 

(zero) jerk cost. 


