
 Behavioral evidence for parabolic primitives 

Supporting Text 2 

Procedure for fitting parabolas 

We observed that following practice, the fitted parabolic segments converged to a few 

clusters according to their orientation. Furthermore, the locations of the parabola vertices 

matched the locations of maximal Euclidian curvature points. This led us to conserve the 

point of maximal curvature (vertex) in the fitting procedure, which was implemented as 

follows. 

1. Segmentation step: We segmented the data into movement segments (defined in 

Methods). 

2. Initialization step: Points of local maxima of the Euclidian curvature were used as 

landmarks for fitting the parabolas. For every local maximum of the Euclidian 

curvature, we selected 9 consecutively recorded samples so that the 5
th

 sample 

corresponded to the location of the maximal curvature point for that path portion. 

Note that in this algorithm the Euclidian curvature was estimated for the 

movement data after they were filtered using a Gaussian filter. This was based on 

a cut-off frequency of 4 Hz, used for removing multiple small peaks in the 

estimated curvature, and not on a cut-off of 8 Hz as was used for data smoothing 

in the rest of our data analysis. 

3. Propagation step: We applied a greedy propagation algorithm to these initialized 

elements of the hand path. 

The greedy algorithm for fitting a parabola to the path of a drawing movement is used to 

iteratively propagate the initialization of the parabolic segment forwards and backwards 

in time as follows: 
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1. At each iteration step, find the best fitting parabola for the current path stroke by 

minimizing the Euclidian distance between the parabola (identified by its focal 

parameter, orientation and vertex) and the path stroke. Compute the distances 

between the parabola and 15 position samples backwards and forwards in time 

along the path stroke.  

2. Estimate the number of consecutive samples deviating from the parabola by less 

than a threshold of 0.4 mm for both the past and future path portions. This 

threshold value was heuristically selected. If one side contains a larger amount 

of such samples, propagate the parabolic segment towards that part by one 

sample; otherwise, if both sides contain an equal (non-zero) number of such 

samples, propagate towards each side by one sample; otherwise, stop the 

propagation. Perform all estimations of the deviation in the coordinate system in 

which the focal parameter of the best fitting parabola is equal to 1 mm. To do so 

first apply an equi-affine transformation that changes the focal parameter p  (to 

1) and preserves the location of the point of maximal curvature on the parabola. 

Incorporating other criteria for deviation from the best fitting parabola, for 

example, varying the threshold along the parabola may increase the robustness 

of the algorithm. 

An alternative procedure for finding the best fitting parabola for a piece of drawing 

is to parameterize the path using the equi-affine arc-length σ  and fitting it with second 

order polynomials in σ . This fitting procedure only requires estimating the equi-affine 

length and does not involve curve fitting at each iteration step. The σ -based fitting 

procedure is computationally faster and easier to program but demands high precision in 
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the calculation of the equi-affine length for sample-wise data, which is sometimes 

difficult to achieve. We propose that finding the best fitting second order polynomial for 

the path parameterized with the equi-affine arc-length may be useful in further 

applications which involve fitting parabolas to curves.  

We estimated the goodness of fit of the parabola by using the variability of the 

recorded ( )ii yx ,  and parabolic ( )ii yx ~,  position samples (x coordinates of the recorded 

and parabolic samples are the same, ( )pxyi 2/~ 2
= ) within the canonical coordinate 

system for the fitted parabola (defined in step 3 of the greedy algorithm). The error of 

fitting the recorded stroke was further estimated using the R-square measure as follows: 
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We interpret D  as the proportion of the data variance unexplained by the model. 

 


