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Text S2

FMA of the end-to-end distance of an α-helix

As a first and trivial example we analyze collective motions related to the end-to-end distance Lh of
the Fs21 helix. Because parts of the results are intuitively clear, this example is particularly useful to
illustrate the technique. Here, Lh is used as the functional quantity f(t), and it was measured from the
distance between the Cα atoms of residues Ala3 and Arg19, as shown in fig. 1A. (Figure numbers in this
supporting text S2 always refer to the figures within text S2.) The Pearson coefficient R turned out to
be sufficient as correlation measure.

The basis set {ei} for the collective vector a was taken from a PCA of the backbone atoms of residues
Ala3 to Arg19. The first 20 PCA vectors were used as basis set. The motions along some of the PCA
vectors are depicted in fig. 1B. Noteworthy, the PCA vectors correspond to the harmonic modes of a
simple helical spring. Vectors 1 and 2 correspond to bending modes (in two dimensions), vector 3 to a
torsional and vector 6 to an elongation mode. The other vectors correspond to higher harmonics of these
three fundamental modes.

The helix end-to-end distance from the 53-ns trajectory of the completely folded helix is shown in
fig. 1C as black curve. The first 40 ns (40.000 frames) were used as model building set (fig. 1C, red
background), i.e., to optimize the correlation Rm using eqs. 5 of the main manuscript and to fit the
model mf (t) to the data f(t) using eqs. 7. The left inset in fig. 1C displays in high time resolution the
data f(t) and the model mf (t) as black and red curve, respectively. As apparent from the inset, mf (t)
is a good approximation to f(t). This fact is further quantified in fig. 1D which plots the model mf (t)
versus the data f(t) as scatter plot. A strong correlation of Rm = 0.98 between data and model is found.

The remaining 13 ns of the 53-ns trajectory were used for cross-validation (green background in
fig. 1C). To this end, the model derived using the model building set was used to predict Lh. The
right inset in fig. 1C shows the data and the prediction as black and green curve, respectively. Excellent
agreement is found, indicating that the model derived using the model building set has indeed predictive
power. The predictive power is quantified in fig. 1E which plots the prediction versus the data. As for
the model building set, a strong correlation of Rc = 0.97 is found. Noteworthy, data points around
Lh ≈ 1.8 nm are well predicted although such structures were not present in the model building set
(fig. 1D).

How many PCs are necessary to construct a good model for Lh? This question is addressed in fig. 1F
which plots the correlation Rc of the cross-validation set as a function of the number of PCA vectors d
used to construct the model. Apparently, using 6 PCs already yields a reasonable model (Rc > 0.88),
and using more than 13 PCs yields an excellent model (Rc > 0.96). In this trivial example no overfitting
occurred, even when using all 153 PCs (data not shown). The choice for d is therefore partly arbitrary in
this case. Besides the influence of the number of PCs, the number of simulation frames that are required
to construct a good model may be of interest. Figure S2A plots Rc and Rm (using 20 PCA vectors as
basis set) as a function of the number of frames in the model building set. As visible from fig. S2A, 30
frames would have been sufficient to construct a good model, i.e. much less than highlighted in fig. 1C.
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Figure 1. Functional mode analysis of the helix end-to-end distance. (A) The Fs21 helix. The
end-to-end distance was measured as the distance between the Cα atoms of Ala3 and Arg19 (red
spheres). (B) The PCA vectors ei of the helix correspond to the harmonic modes of a helical spring, i.e.
to bending, torsional, and elongation modes. (C) Helix end-to-end distance as a function of simulation
time (black line). The model building set (t < 40 ns) is highlighted by a red background, the
cross-validation set by a green background. The insets display in fine time scale the simulation data as
black, the model as red and green line, respectively. (D) Data versus model for the model building set,
and (E) for the cross-validation set. (F) Correlation for cross-validation Rc set as a function of the
number of principal components d used in the optimization: d ≥ 6 yields a good model, d ≥ 12 an
excellent model.
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Figure 2. Collective motion related to the
helix end-to-end distance Lh. (A) Cartoon
representation of the maximally correlated
motion (MCM) along the collective vector a,
and (B) of the ensemble-weighted MCM
contributing to Lh. (C) Components αi of a
with respect to the PCA vectors ei, or,
alternatively, components βi of the linear model
for Lh. (D) Variances σ2

i of the principal
components, (E) contribution of principal
component i to the variance of the model, and
(F) the cumulative contribution of principal
component i to the variance of the model. The
dashed line indicates the variance var(Lh) of the
simulated helix end-to-end distance.

The ‘maximally correlated motion’ (MCM) along a and the ensemble-weighted MCM (ewMCM) are
visualized in figs. 2A and B, respectively. The vector a describes the motion of the Cα atoms of Ala3
and Arg19 (shown as spheres) along the helix axis. This result is expected because the helix end-to-end
distance was originally measured as the distance between these two atoms. In contrast, the ewMCM is
characterized by a combination of collective bending and stretching motions, and is in accordance with
the topology of the helix. In that example, the scalar product between the MCM and the normalized
ewMCM equals 0.71, indicating that the MCM and the ewMCM are related but not identical. The
coordinates αi of a with respect to the PCA vectors ei are shown in fig. 2C. (Note that a =

∑d
i=1 αiei.)

Which PCs contribute to Lh? This question is analyzed in fig. 2D-F. For comparison, fig. 2D displays
the variances of the PCs var(pi), i.e. the contribution of the ith PC to the MSF of the atom positions. The
contribution of the PCs to the variance of Lh is plotted in fig. 2E, as derived by eq. 8. The components
4 and 5 (1st harmonic of the bending mode, compare fig. 1B) as well as components 6 and 12 (elongation
mode and its first harmonic) dominate the variance of f(t). Noteworthy, the first three PCs (fundamental
bending modes and torsional mode) hardly contribute to Lh, although they dominate the MSF of the
atom positions. Finally, fig. 2F displays the cumulative contribution of the PCs to var(Lh). Here, 13
components are sufficient to explain the variance of Lh.


