
R Programming

Stephen Eglen

June 9, 2009

1 / 121

Books and online help

• Introductory Statistics with R (Springer, Dalgaard).

• A first course in statistical programming with R (CUP, Braun and
Murdoch).

• Computational Genome Analysis: An Introduction (Springer, Deonier,
Tavaré and Waterman).

• S programming (Springer, Venables and Ripley).

• R programming for Bioinformatics (CRC Press,Gentleman).

• Writing Scientific Software (WSS) (CUP, Oliveira and Stewart).

• www.r-project.org, www.rseek.org

• R-help mailing list.

2 / 121

Aims of course
This course aims to teach R as a general-purpose programming language.
Issues specific to Computational Biology (e.g. Bioconductor packages) are
covered in other course modules.
Topics to be mastered in this course include:

• Interactive use of R.

• Basic data types: vector, matrix, list, data.frame, factor, character.

• Writing scripts.

• Graphical facilities.

• Writing your own functions.

• File input/output.

• Control-flow statements, looping.

• Vectorization.

• Numerics issues.

• Debugging.

3 / 121

What is R?

• Computing environment, similar to matlab.

• Very popular in many areas of statistics, computational biology.

• “Programming with data” (Chambers)

• Approach: command-line for one-liners; write scripts/functions for
larger work (edit/run cycle).

4 / 121

www.r-project.org
www.rseek.org


History

• S language came from Bell Labs (Becker, Chambers and Wilks).
Commercial version S-plus (1988).

• R emerged as a combination of S and Scheme: Ross Ihaka and Robert
Gentleman (NZ).

• 1993: first announcement.

• 1995: 0.60 release, now under GPL.

• Oct 2008: release 2.7.2. Stable, multi-platform. Major release typically
Apr/Oct with fixes between. (2.8.0 due 2008-10-20).

• R-core now 20 people, key academics in field, including John Chambers.

5 / 121

Strengths of R

• GPL’d, available on many platforms.

• Excellent development team with Apr/Oct release cycle.

• Source always available to examine/edit.

• Fast for vectorized calculations.

• Foreign-language interface (C/Fortran) when speed crucial, or for
interfacing with existing code..

• Good collection of numerical/statistical routines.

• Comprehensive R Archive Network (CRAN) ∼ 1550 packages.

• On-line doc, with examples.

• High-quality graphics (pdf, postscript, quartz, x11, bitmaps). Often
used just for plotting . . .

6 / 121

Graphics example

Jean YH Yang; gpQuality

http://bioinf.wehi.edu.au/marray/ibc2004/lect1b-quality.pdf

7 / 121

Weaknesses of R

• Loops are slow. Learn how to vectorize solutions or use apply family of
functions.

• No compiler yet, and unlikely to happen due to nature of language.

• No decent GUI built-in to R. Tk is available within base R, and
packages for other graphical tooklits (e.g. Gtk2, Qt) are also available.

8 / 121

http://bioinf.wehi.edu.au/marray/ibc2004/lect1b-quality.pdf


Brief comparison to matlab

• Flexible language, similar to matlab, but definitely not “everything is a
matrix”. Frames, lists, vectors . . .

• From matlab to R:
http://cran.r-project.org/doc/contrib/R-and-octave.txt

• Comprehensive matlab and R guide: http:
//www.math.umaine.edu/faculty/hiebeler/comp/matlabR.html

• Use x[ i ] not x( i ) for indexing vectors.

• Making vectors: x <−c(10, 9, 5, 1)

• Assignment: best to use <− rather than =. Stay away from
underscore!

x <− 10
x = 10 ## e q u i v a l e n t , more r e a d a b l e ?
l o . v a l <− 100 ## not l o v a l <− 100

9 / 121

Using R

• Start-up: type ‘R’ at command line.

• Type commands interactively, and get results.

• Type commands into a file; source( ’ myfile .R’); edit file . . .

• Mac/Win has a GUI for interactive use, with internal editors.

• All platforms have a command-line interface

• Many external editors have support for R, including Emacs
(http://ess.r-project.org) and Eclipse IDE
(http://www.walware.de/goto/statet).

10 / 121

My very first R session

x <− rnorm ( 5 0 , mean=4)
x
mean ( x )
ra ng e ( x )
h i s t ( x )

## check h e l p −− how to change t i t l e ?
? h i s t
h i s t ( x , main=”my f i r s t p l o t ” )
q ( )

11 / 121

Interacting with R

• Can use up/down arrow keys to go through command history. Within a
command, use left/right arrow keys to edit.

• History can be saved over sessions (?history).

• Multiple commands can be put onto one line, using “;” as separator
between lines, e.g. x<−10; y<−3; a <−5.

• TAB can do object/file completion.

12 / 121

http://cran.r-project.org/doc/contrib/R-and-octave.txt
http://www.math.umaine.edu/faculty/hiebeler/comp/matlabR.html
http://www.math.umaine.edu/faculty/hiebeler/comp/matlabR.html
http://ess.r-project.org
http://www.walware.de/goto/statet


Objects and Functions

R manipulates objects. Each object has a name and a type (vector, matrix,
list, ...)
Name of an object: letters (upper/lower case are distinct), digits, period.
Start with a letter.
Objects set by way of assignement. Use the assignment operator rather than
= wherever possible. (Does “i = i+1” make sense?)

x <− 200
h a l f . x <− x/2
t h r e s h o l d <− 9 5 . 0
age <− c ( 1 5 , 19 , 30)
age [ 2 ] ## [ ] f o r a c c e s s i n g e l e me nt .
l e n g t h ( age ) ## ( ) f o r c a l l i n g f u n c t i o n .

13 / 121

What’s up with the assignment and underscore? (Advanced)

Historically, underscore was used in S for assignment (because an old system
keyboard had a key equivalent to the ASCII underscore that generated a
back arrow). Hence underscore was not used within variables.
More recently, = is now available as an assignment operator (similar to
languages like C), but is frowned upon as it can be confusing.
What does i = i+1 imply mathematically?
Better to stick to i <−i + 1 and use equals just within calls to functions,
e.g. runif (max=3).
Note also that assignments return values:

y <− 1 + ( x<−9)
a <− b <− 0

http://developer.r-project.org/equalAssign.html

14 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
15 / 121

Vectors

Vectors are a fundamental object for R. Scalars are treated as vector of
length 1.

y <− c ( 1 0 , 20 , 40)
y [ 2 ]
l e n g t h ( y )
x <− 5
l e n g t h ( x )

Some operations work element by element, others on the whole vector,
compare:

y <− c ( 2 0 , 49 , 16 , 60 , 100)
min ( y )
ra ng e ( y )
s q r t ( y )
l o g ( y )

16 / 121

http://developer.r-project.org/equalAssign.html


Generating vectors

Many short hand methods for regular sequences; c() for irregular.

x <− seq ( from =1, to =9, by=2)
y <− seq ( from =2, by =7, l e n g t h =3)
z <− 4 : 8
a <− seq . i n t ( 5 ) ## f a s t f o r i n t e g e r s
b <− c ( 3 , 9 , 2)
d <− c ( a , 10 , b )
e <− r e p ( c ( 1 , 2 ) , 3)
f <− i n t e g e r ( 7 )

17 / 121

Accessing and setting elements

x <− seq ( from =100 , by =1, l e n g t h =20)
x [ 3 ] ## j u s t e l em en t 3 .
x [ c ( 1 2 , 1 4 ) ] ## el em ent 12 and 14
x [ 1 : 5 ]
bad <− 1 : 4
x[−bad ] ## e x c l u d e e l e m e n t s

Can also provide a logical vector of same length as vector (logical values
explained later).

x <− c ( 5 , 2 , 9 , 4)
v <− c (T, F , F , T)
x [ v ]

Elements can be set in several ways

x <− r e p ( 0 , 1 0 )
x [ 1 : 3 ] <− 2
x [ 5 : 6 ] <− c (−5 , NA)
x [ 7 : 1 0 ] <− c ( 1 , 9 ) ## r e c y c l i n g .

18 / 121

Recycling rule (Advanced)

Recycling is convenient, but dangerous; when vectors are of different lengths,
the shorter one is often recycled to make a vector of the same length.

a <− c ( 1 , 5 ) + 2
x <− c ( 1 , 2 ) ; y <− c ( 5 , 3 , 9 , 2 )
x + y
x + c ( y , 1 ) ## odd r e c y c l i n g , warn ing .

19 / 121

Naming indexes of a vector

j o e <− c ( 2 4 , 1 . 7 0 )
j o e
names ( j o e )
names ( j o e ) <− c ( ’ age ’ , ’ h e i g h t ’ )
j o e
j o e [ ” h e i g h t ” ] == j o e [ 2 ]

Refering to index by name rather than by position can make code more
readable, and flexible. Cannot do things like x [1:4] easily though, since you
need to name all four elements you want.

Note: in second use of names() above, we are actually using the
replacement function names<−, see later.

20 / 121



Common functions for vectors
• length()
• rev()
• sum(), cumsum(), prod(), cumprod()
• mean(), sd(), var(), median()
• min(), max(), range(), summary()
• exp(), log(), sin(), cos(), tan() [radians, not degrees]
• round(), ceil(), floor(), signif()
• sort(), order(), rank()
• which(), which.max()
• any(), all()

Functions can be called within function calls; the following are equivalent:

x <− c ( 3 , 2 , 9 , 4)

y <− exp ( x ) ; z1 <− which ( y > 20) ## c a s e 1
z2 <− which ( exp ( x ) > 20) ## c a s e 2

a l l . e q u a l ( z1 , z2 )
21 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
22 / 121

Default values for function arguments

A function will error if not all required arguments are provided. Some
functions have both required and optional arguments. If the optional
arguments are not provided, they are either ignored, or they take a default
value.

Usage:
round(x, digits = 0)

x <− c ( 2 . 0 9 1 , 4 . 1 2 6 , 7 . 9 2 5 )
round ( ) ## r e q u i r e d ar g i s m i s s i n g
round ( x )
round ( x , d i g i t s = 2)

Let’s see how this works in mode detail.

23 / 121

Argument matching
R has a flexible method for specifying arguments to function. We can either
provide an actual value for a formal argument, or give arguments as
key=value (or formal=actual). As an example, let’s look at help for seq:

seq(from = 1, to = 1, by = ((to - from)/(length.out - 1)),
length.out = NULL, along.with = NULL, ...)

Typical calls are as follows:

seq ( 1 , 3 , 0 . 5 ) ## p o s i t i o n a l matching
seq ( 1 , 5 , l e n g t h . out =3) ## can s k i p a r g s ( e . g . by )
seq ( to =5) ## o r d e r not i m p o r t a n t .
seq ( f =5, t =1) ## a b b re v t a g s .
seq ( l e n =5, 1 , 2 ) ## t a g s removed b e f o r e p o s i t i o n a l matching

The ... notation will allows for other arguments to be passed, which are not
used by this function.
(NB: in seq(from=x), from is the formal argument of the function, and
here x is the actual value.)

24 / 121



. . . in function calls (Advanced)

Why do some functions, like sqrt, require only one argument, yet others take
many arguments?
Functions like c, cbind, have ... in the arguments:

Usage:

c(..., recursive=FALSE)

Arguments:

...: objects to be concatenated.

The ... indicate any number of objects may be passed, not just (say) one or
two.
The result of c() is to combine them all into one long vector, taking into
account if the keyword “recursive” is provided [when args are first flattened].
The ... can also indicate that other arguments can be provided which are
not processed directly by this function, but may be useful for other functions
(e.g. popular when plotting).

25 / 121

Replacement functions (Advanced)

x <− 1 : 5
x
l e n g t h ( x )
l e n g t h ( x ) <− 2
x

normally length(x) would return a value, rather than you assigning a value
to the function!. These are replacement functions, see help page:

Usage:

length(x)
length(x) <- value

26 / 121

Getting help: key commands

• help( hist ) to see help file (or ? hist ).

• args( hist ) to see arguments of a function.

• example(boxplot) run examples in help page.

• help . start () starts web-browser for help/ on-line docs.

• help . search(”histogram”)

• demo() to list all demos, e.g. demo(graphics)

NB: ?command works as shorthand for help(”command”) except for a small
number of commands, e.g. if, while. Use the longhand for these.

27 / 121

Help pages

• What you can expect to find:

• Description – one line summary
• Usage – formal arguments
• Arguments – interpretation of arguments
• Details – what the function does
• Value – return value.
• References – documentation
• See also – helps you find related pages
• Examples – guaranteed to run: example(hist)

28 / 121



Numbers and special values

• numeric (floating-point, double): 12, 4.92, 1.5e3 is .numeric() (integers
converted to f.p.)

• complex: 3+2i. is .complex()

Special values:

• NA: not available. (Often used to represent missing data point) is .na()

• NaN: not a number. e.g. 0/0. is .nan()

• Inf, -Inf: ±∞ is . finite ()

You might also meet:

• NULL: often, list of zero length. is . null ()

29 / 121

Operator precedence ?Syntax
3 ∗ 4 + 2 != 3 ∗ (4 + 2)
2ˆ3+1 != 2ˆ(3+1)
1:5−1 ## caught me out .

Subset taken from ?Syntax, see that page for full list. Highest precedence at top.

’[ [[’ indexing

’$ @’ component / slot extraction

’^’ exponentiation (right to left)

’- +’ unary minus and plus

’:’ sequence operator

’%any%’ special operators

’* /’ multiply, divide

’+ -’ (binary) add, subtract

’< > <= >= == !=’ ordering and comparison

’!’ negation

’& &&’ and

’| ||’ or

’<- <<-’ assignment (right to left)

’?’ help (unary and binary)

Bottom line: use parentheses (parens) to order preference.
30 / 121

Operators

Most operators will be familiar, but some may not:

x <− 10
x == 4 ## t e s t f o r e q u a l i t y
x != 10 ## not e q u a l ?
7 %/% 2 ## d i v i s i o n , i g n o r i n g r e m a i n d e r . ( 3 )
7 %% 2 ## r e m a i n d e r ( 1 )

x <− 9 ## a s s i g n m e n t
x <<− 9 ## a s s i g n x to 9 i n t he g l o b a l env . (BAD)

## R a i s i n g to a power can be done i n two ways .
a l l . e q u a l ( 1 0 . 1 ∗∗ 2 . 5 , 1 0 . 1 ˆ 2 . 5 )

31 / 121

When things go wrong

Syntax errors are those where you’ve just made a typing mistake.
Logical errors are harder to find!

Common problems:

• missing close bracket leads to continuation line.

> x <− (1 + (2 ∗ 3)
+

Hit Ctrl C (below) or keep typing!

• too many parens: 2 + (2*3))

• wrong/mismatched brackets (see next slide).

• Likewise, do not mix double quotes and single quotes.

• . . .

• wrong variable name (not syntax error)

• When things seem to take too long, try C-c [Ctrl and C, together]

32 / 121



Types of parentheses

• f(3,4) – call the function f, with arg1=3, arg2=4.

• a + (b*c) – use to enforce order over which statements are executed.

• { expr1; expr2; . . . exprn } – group a set of expressions into one
compound expression. Value returned is value of last expression; used
in looping/conditionals.

• x[4] – get the 4th element of the vector x.

• l[[3]] – get the 3rd element of some list l, and return it. (compare with
l[3] which returns a list with just the 3rd element inside).

33 / 121

From interactive to source files

• Typing in commands interactively is good for one-liners, but soon you
will want to switch to putting your sequence of commands into a script
file, and then ask R to run (‘source’) those commands.

• This leaves to a rapid edit–run–edit cycle.

• e.g. type these commands into a file:

## Example s c r i p t f i l e , to g e n e r a t e a l i t t l e p l o t .
## Demonstrate t r i g o n o m e t r i c f u n c t i o n s .
## Sept 2007
x <− seq ( from =0, to=2∗ pi , l e n g t h =100)
y <− s i n ( x )
z <− cos (2 ∗x )
z ## w i l l not appear
p r i n t ( y ) ## s h o u l d use p r i n t ( )
p l o t ( x , y , t y p e= ’ l ’ )
l i n e s ( x , z , t y p e= ’ l ’ , c o l= ’ r e d ’ )

• Eval within R using source( ’ trig .R’).

34 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
35 / 121

Scripts

• Use source( ’ trig .R’, echo=T) to see commands and output. Or use
print (x) to print an object within a script.

• Keep your code open in the editor in one window, and keep R running
in another window.

• Are you in the right directory? Check that you can see your script file
in the same directory as where R is currently. Check dir (), and setwd,
see later.

• On unix, the initial directory is the directory from where you started R.
On windows, the initial directory might be “My Documents”. You may
need to change directory (setwd) first.

• Use a good editor that helps you spot mistakes (e.g. paren matching).
Examples: Emacs/ESS (disclaimer!), gedit.

• Use “.R” or “.r” as the filename suffix. Avoid any temptation to put
spaces (although R does not mind) in your filenames!

36 / 121



Why are scripts a good thing?

• You don’t have to remember what commands you ran, they are saved
in the file.

• This corresponds to the “source is real” philosophy of using S/R.

• You can easily give your work to others, by passing them the file.

• You can eventually run your scripts in BATCH, i.e. non-interactively.
Good for long jobs which you can leave overnight.

37 / 121

Running scripts in batch (Advanced)

• At the command line, type “R CMD BATCH trig.R”. R will start up,
process your commands and then quit.

• Output is stored in the file trig.Rout

• If there were no errors, the last line of the output file shows the time
taken to run the script.

• Any output is not shown on the screen but sent to a PDF called
Rplots.pdf.

• This is a GREAT way of testing your scripts, since R starts with an
empty workspace, you will see if you have all the steps needed.

• Aim to always leave your scripts in a working state at the end of a
session, so that a few days later you don’t have to remember why it
wasn’t working!

38 / 121

Commenting your work

• Do not be shy when putting comments into your code.

• Meaningful variable names help, but do document. At a bare minimum,
each file should state at the top what the purpose of the file. Important
variables and functions should be clearly documented.

• You may think it obvious how your code works, but try looking at it a
week or a month later and then see if you clearly understand it. If in
doubt, document it.

• Describe what your code is doing, not how it is doing it (WSS, p79).
Compare the following two:

s <− s + 1 ## p r e p a r e to p r o c e s s n e x t s u b j e c t
j <− j + 1 ## i n c r e m e n t j by 1 .

• Comments can be put before commands, if you temporarily do not
want to run that command; remove the comments when you want to
run the command again, or delete the line.

## x <− c ( x , c ( 1 , 2 , 3 ) )

39 / 121

Line wrapping
• Line-wrapping. Do not write beyond around column 72, for readability.

You can break long expressions at suitable points.
• End of line shold not look like end of an expression. Compare:

## 1 : ok − a l l f i t s onto one l i n e , j u s t .
x <− s q r t ( c (100 , 200 , 300 , 400 , 500) ) + 10

## 2 : not okay −− f i r s t l i n e i s s e e n as comple te .
x <− s q r t ( c (100 , 200 , 300 , 400 , 500) )
+ 10

## 3 : s o l v e d , by moving th e o p e r a t o r (+) up .
x <− s q r t ( c (100 , 200 , 300 , 400 , 500) ) +
10

## 4 : as 3 , but i n d e n t a t i o n makes i t c l e a r e r .
x <− s q r t ( c (100 , 200 , 300 , 400 , 500) ) +

10
40 / 121

Rplots.pdf


Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
41 / 121

Matrices
A matrix is just a vector with some additional markup to reformat it. Matrix
stored in column-major order (like fortran, unlike C).

x <− 1 : 6
i s . m a t r i x ( x )
dim ( x ) <− c ( 2 , 3 )
i s . m a t r i x ( x )
x
dim ( x )
x [ 2 , 2 ]
x [ 1 , ] ## e x t r a c t i n g v a l u e s .
x [ 1 : 2 , 2 : 3 ]
x [ , 2 ] ## not column v e c t o r !
x [ , 2 , drop=F ] ## gotcha !

> x
[,1] [,2] [,3]

[1,] 1 3 5
[2,] 2 4 6 42 / 121

Typical matrix construction methods

• matrix()

• cbind()

• rbind()

m <− m a t r i x ( f l o o r ( r u n i f ( 6 , max=50)) , nrow=3) ##n c o l=2
x <− r b i n d ( c ( 1 , 4 , 9 ) , c ( 2 , 6 , 8 ) , c ( 3 , 2 , 1 ) )
y <− c b i n d ( c ( 1 , 2 , 3 ) , 5 , c ( 4 , 5 , 6 ) ) # r e c y c l i n g a g a i n

Note that matrix indices can also be named:

dimnames (m) <− l i s t ( s t u d e n t=c ( ” ann ” , ”bob” , ” j o e ” ) ,
exam=c ( ”math” , ” f r e n c h ” ) )

m[ ”bob” , ] ## g e t bob ’ s s c o r e s

43 / 121

Common matrix operations

• diagonal: diag(x) ## watch if x matrix or scalar .

• matrix multiplication: %∗% vs ∗ (element-wise)

x <− m a t r i x ( 1 : 4 , 2 , 2 )
i <− d i a g ( 2 ) ## 2 x2 i d e n t i t y m a t r i x
x %∗% i ## s h o u l d be x
x ∗ i ## not x !

• transpose: t(x)

• dim, nrow, ncol

• inverse: solve (x), x %∗%solve(x) == diag(nrow(x))

• Arrays as extension of matrices to multiple dimensions.
x <−array (1:12, c (2,2,3)) .

44 / 121



Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
45 / 121

Boolean values ?logical
Logical values TRUE/FALSE (abbrev to T/F).

TRUE/FALSE equivalent to 1/0; as.integer(TRUE) is 1.

d <− c ( 3 . 2 , 1 . 0 , 4 . 0 , 9 . 2 , 2 . 3 , 8 . 1 , 6 . 3 )
d > 5 . 0
d [ d> 5 . 0 ]
which ( d>5.0)
d [ which ( d>5 . 0 ) ]
medium . s i z e d <− ( d > 3 . 0 ) & ( d< 5 . 0 )
d [ medium . s i z e d ]
d[−medium . s i z e d ]
i f e l s e ( d > 3 . 0 , 1 . 0 , 0 . 0 ) ## Very handy !

Key operators for handling boolean values:

!TRUE ## n e g a t i o n : swap T −− F .
TRUE & FALSE ## and : both must be t r u e .
FALSE | TRUE ## o r : one must be t r u e .
x o r (TRUE, TRUE) ## x o r : o n l y one i s t r u e . 46 / 121

Boolean logic: issues

a & b (same for a | b) is an elementwise operation, with a result the same
length as the longer of a, b (recycling is used if one vector is shorter).

a &&b examines only the first element of a and b, returning one logical
value. Lazy evaluation is used: we calculate only what’s needed to
determine result.

TRUE | | some . l o n g . computat ion ( )
TRUE && s t o p ( ”no” )

Comparing numbers: When testing numbers for equality, can use x == y
when x,y are integers, otherwise use all.equal(x,y). See later on numerics.
Avoid using F where possible: F <−3; F == FALSE

47 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
48 / 121



What is a list?

A list is used to collect a group of objects of different sizes and types. Very
flexible. Often returned as the result of a complex function (e.g. model fit)
to return all relevant information in one object.

l <− l i s t ( i d= ’ j o e ’ , h e i g h t =1.70 , dob=c (1960 , 12 , 1 ) )
l
l e n g t h ( l )
names ( l ) ##show components
l $ h e i g h t ##a c c e s s an e le me nt .
u n l i s t ( l ) ## compact way o f v i e w i n g i t .

List elements can either be accessed by name (e.g. l$height) or by position
( l [[2]] ).
When using numbers to index list, compare l[2] (a list with one element)
with l[[2]]. You can therefore do l[2:3] but not l[[2:3]].

49 / 121

Modifying lists (Advanced)

We can append new items to list either by making a new list from the old
one (e.g. 1) , or directly by assigning new element (e.g. 2):

l 1 <− l i s t ( who=” f r e d ” )
l 1 <− c ( l1 , h e i g h t =1.8) ## e . g . 1
l 1 [ [ ”dob” ] ] <− c (1965 , 10 , 17) ## e . g . 2

Deleting list items:

l 1 [ ” h e i g h t ” ] <− NULL

Finally, for completeness, here is a way to predefine a list of given length
and gradually fill it in:

empty <− v e c t o r ( ” l i s t ” , 3) ## P r e a l l o c to g i v e n l e n g t h .
names ( empty ) <− c ( ”who” , ” h e i g h t ” , ”dob” )
empty [ [ ” h e i g h t ” ] ] <− 1 . 8

50 / 121

Data frames

Data frame is a special kind of list; all elements are vectors of same length.
This is like a matrix, but each column can be of a different type.
Useful for reading in tabular data from a file (see read.csv).

names <− c ( ” j o e ” , ” f r e d ” , ” h a r r y ” )
a <− c ( 2 4 , 19 , 30)
ht <− c ( 1 . 7 , 1 . 8 , 1 . 7 5 )
s <− c (TRUE, FALSE , TRUE)
d <− data . f rame ( name=names , age=a ,

h e i g h t=ht , s t u d e n t=s )
d$ age
names ( d )
d [ 2 , ] ## a c c e s s 2nd row .

Compare how a data frame (d) is printed, compared to printing as. list (d)

51 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
52 / 121



Factors (Advanced)

(Mostly seen when reading in data from e.g. CSV file)
Factors internally code categorical variables with a number. e.g. 1=Sunday,
2=Monday, . . . 7=Saturday. For large vectors, this is more efficient storage,
especially when character strings repeat. Can also make code more readable.

s c o r e s 1 <− c ( ’ good ’ , ’ poor ’ , ’ bad ’ , ’ poor ’ ,
’ bad ’ , ’ bad ’ , ’ good ’ )

s c o r e s <− f a c t o r ( s c o r e s 1 )
s c o r e s
l e v e l s ( s c o r e s )
as . i n t e g e r ( s c o r e s )
which ( s c o r e s 1 == ’ bad ’ )

## Can do f u r t h e r c o m p a r i s o n s w i t h an o r d e r e d f a c t o r
## L e v e l s a r e now o r d e r e d , as shown by ”<” i n l e v e l s .
s2 <− f a c t o r ( s c o r e s 1 , l e v e l s=c ( ’ poor ’ , ’ bad ’ ,

’ good ’ ) , o r d e r e d=T)
s2 [ 1 ] > s2 [ 2 ]

53 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
54 / 121

Strings / character arrays
Character arrays are vectors of strings.

• Use single (’) or double (”) quotes to mark strings, but don’t mix:

x <− ’ good ’
z <− ”no ’
z <− ” i t ’ s work ing ”

• Within a script, easy way to generate output:

c a t ( ”Now computing th e s te ady−s t a t e \n” )
x <− 134
c a t ( ” s q r t o f ” , x , ” i s ” , s q r t ( x ) , ”\n” )
c a t ( ” s q r t o f ” , x , ” i s ” , s q r t ( x ) , ”\n” , sep= ’ ’ )

• blackslash characters allow you to generate control characters,
importantly: newline: \n, tab: \t. e.g. cat(”5\t9\n”)

• paste() returns string, e.g. for assignment.

x <− 1 : 5 ; exp . d i r <− ’ /home/ s t e p h e n / r e s ’
f i l e <− p a s t e ( exp . d i r , ’ / e x p t r e s ’ , x , ’ . dat ’ , sep= ’ ’ )

55 / 121

Strings

• Just as R stores vectors of numbers, it also stores vectors of strings.

• Pattern matching facilities are available, based on Unix terms (grep,
regular expressions). These are worth learning:

s <− c ( ’ a p p l e ’ , ’ bee ’ , ’ c a r s ’ , ’ d a n i s h ’ , ’ egg ’ )
nchar ( s )
s u b s t r ( s , 2 , 3 )
gr ep ( ’ e ’ , s )
g r ep ( ’ ˆ e ’ , s ) ## r e g e x p s . . .

sub ( ’ e ’ , ’ ’ , s )
gsub ( ’ e ’ , ’ ’ , s ) ## g l o b a l sub , watch ” bee ”

t o u p p e r ( s )
s p r i n t f ( ’ name %s l e n %d ’ , s , nchar ( s ) ) ## C u s e r s !

56 / 121



Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
57 / 121

Inspecting variables and the environment

is .xyz, as .xyz family of functions are useful for checking mode of objects
and converting between them. (e.g. is . vector).

o b j e c t s ( ) ## what v a r s do I have ?
l s ( ) ## s h o r t h a n d f o r o b j e c t s .
rm ( l i s t = l s ( ) ) ## c l e a r up t he work ing e n v i r o n m e n t
x <− 9 ; y<− c ( 2 , 4 , 5 ) ; m <− m a t r i x ( 2 : 5 , 2 , 2 )
l s ( )
rm ( x ) ## remove a v a r
mode ( y )
o b j e c t . s i z e ( y )
i s . v e c t o r ( y )
i s . m a t r i x ( y )
as . v e c t o r (m) ## c o n v e r t from one f a m i l y to a n o t h e r .

58 / 121

What is an object?

• An object is typically either a variable or a function.

• You can use the same name for a function and a variable, and R uses
context to decide which you mean:

> sum <− 3 + 4 + 5
> t o t a l <− sum ( 1 : 4 )
> t o t a l
[ 1 ] 10
> sum
[ 1 ] 12
> sum ( sum ) ## can g e t c o n f u s i n g !
[ 1 ] 12

59 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
60 / 121



Basic plotting

• Basic x,y plots

• Multiple plots in one figure

• Saving your plots

This section will just introduce the mechanics of making basic plots, rather
than worry about interpreting them.

61 / 121

Basic plotting

x <− seq ( from =0, to=2∗ pi , l e n =1000)
y <− cos (2 ∗x )
## j u s t p r o v i d e data ; s e n s i b l e l a b e l l i n g
p l o t ( x , y )

## Expand on p r e v i o u s p l o t . . .
p l o t ( x , y , main= ’ cos (2 x ) ’ , t y p e= ’ l ’ , l t y =1, bty= ’ n ’ )
y2 <− s i n (2 ∗x )
l i n e s ( x , y2 , main= ’ s i n (2 x ) ’ , t y p e= ’ l ’ , l t y =2)
same <− which ( abs ( y − y2 ) < 0 . 0 1 )
p o i n t s ( x [ same ] , y [ same ] , pch =19, c o l= ’ r e d ’ , cex =3)
l e g e n d ( ’ b o t t o m r i g h t ’ , c ( ” cos (2 x ) ” , ” s i n (2 x ) ” ) ,

l t y=c ( 1 , 2 ) )

62 / 121

Options controlling the plot

par() outputs the (long) list of options that control plotting behaviour.
Read ?par for all the details!
Common options to explore:

• mfrow, mfcol: multiple plots in figure

• mar, oma: margins around plot and figure.

• ask: whether to hit RETURN between pages of figures.

63 / 121

Mutltiple data sources on one plot

When you wish to have multiple data sources on one plot (e.g. two
time-series plots), the approach is to draw the first using plot and then draw
subsequent features using lines or points.
Axes are not rescaled, so draw the bigger plot first.

x <− 1 : 3 0
y <− s q r t ( x ) ; z <− l o g ( x )
p l o t ( x , y ) ; l i n e s ( x , z , c o l= ’ r e d ’ )
p l o t ( x , z ) ; l i n e s ( x , y , c o l= ’ r e d ’ ) ## some data m i s s i n g

64 / 121



Multiple plots in one figure

mfrow and mfcol are useful parameters within par(), but margins often need
to be changed to maximise space.

pdf ( f i l e=’ mfrow eg . pdf ’ , w idth=6,
h e i g h t =4)

par ( mfrow=c (2 , 3 ) )
par (mar=c ( 3 . 5 , 3 . 5 , 1 . 5 , 0 . 5 ) ,

mgp=c ( 2 . 5 , 1 , 0 ) )
x <− seq ( from=0, to=2∗ pi , l e n =100)
p l o t ( x , s i n ( x ) , main=” s i n ( x ) ” ,

type=’ l ’ )
p l o t ( x , s i n (2 ∗x ) , main=” s i n (2 x ) ” ,

type=’ l ’ )
p l o t ( x , s i n (3 ∗x ) , main=” s i n (3 x ) ” ,

type=’ l ’ )
p l o t ( x , cos ( x ) , main=” cos ( x ) ” ,

type=’ l ’ )
p l o t ( x , cos (2 ∗x ) , main=” cos (2 x ) ” ,

type=’ l ’ )
p l o t ( x , cos (3 ∗x ) , main=” cos (3 x ) ” ,

type=’ l ’ )
dev . o f f ( )

0 2 4 6

−
1.

0
0.

0
1.

0 sin (x)

x

si
n(

x)

0 2 4 6

−
1.

0
0.

0
1.

0 sin (2x)

x

si
n(

2 
* 

x)

0 2 4 6

−
1.

0
0.

0
1.

0 sin (3x)

x

si
n(

3 
* 

x)

0 2 4 6
−

1.
0

0.
0

1.
0 cos (x)

x

co
s(

x)
0 2 4 6

−
1.

0
0.

0
1.

0 cos (2x)

x

co
s(

2 
* 

x)

0 2 4 6

−
1.

0
0.

0
1.

0 cos (3x)

x

co
s(

3 
* 

x)

65 / 121

Saving your plots

R can save plots in many formats, including PDF, postscript, PNG, JPEG.
Best to use vector formats (PDF, postscript) for graphs and bitmap formats
(png, jpeg) for images.
R has output devices, only one of which is active, dev.cur().

dev . l i s t ( )
pdf ( f i l e = ’ h i s t . pdf ’ , w idth =7, h e i g h t =7) ## i n c h
dev . l i s t ( )
h i s t ( rnorm (9999) )
dev . o f f ( ) ## c l o s e d e v i c e

png ( f i l e = ’ h i s t . png ’ , w=600 , h=600) ## p i x e l s
h i s t ( rnorm (9999) )
dev . o f f ( )

Zoom in on text of PNG to see limitations of this format.

66 / 121

Next steps with plotting (Advanced)

R has a vast range of functions for plotting particular data types. You may
read about different packages for plotting:

• base graphics (or “traditional”)

• lattice/grid (lattice is built upon grid)

• ggplot (quite new)
http://had.co.nz/ggplot2/

Here are some starting points to explore:

• demo(graphics) to see diversity of plots.

• low-level functions: symbols(), rect(), segments(), abline().

• R graphics gallery
http://addictedtor.free.fr/graphiques

67 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
68 / 121

http://had.co.nz/ggplot2/
http://addictedtor.free.fr/graphiques


Reading/writing data to file system

• What’s my current directory? dir , getwd, setwd

• scan, readLines

• read.csv, read.table, write.table

• RData files

• Further I/O functions

69 / 121

Interacting with the file system

• where am I currently? getwd()

• change me to a new directory: setwd(”/tmp”)
(GUIs have chooser for interactively changing directory.)

• What files are in my [current] directory?

d i r ( )
d i r ( ”/tmp” )
d i r ( p a t t e r n=” \\ .R$” ) ## r e g e x p s , s e e l a t e r .

70 / 121

Scan, write, readLines
For basic reading/writing of data, use scan/write. Filenames are specified
relative to current directory. Can even give URL as a file. Files often have a
header which can be skipped over.

x <− scan ( ’ ages . dat ’ , s k i p =1)
summary ( x )

## No l i n e b r e a k i n n e x t l i n e . . .
h <− scan ( ’ h t t p : //www. damtp . cam . ac . uk/
u s e r / e g l e n / t e a c h i n g / r / h e i g h t s . dat } ’ )

rand . v a l s <− round ( r u n i f (10 0 , min=5, max=10) , 2)
w r i t e ( rand . v a l s , ’ /tmp/ r a n d v a l s . dat ’ )
s <− scan ( ’ /tmp/ r a n d v a l s . dat ’ )
a l l . e q u a l ( s , rand . v a l s )

s1 <− r e a d L i n e s ( ’ ages . dat ’ ) ## t r e a t s as s t r i n g s

71 / 121

read.table / read.csv / write.csv

If data are tabular, read.table or read.csv is often useful. (Useful for
importing spreadsheets; just save as a comma separated value file, CSV.)

x <− r e a d . t a b l e ( ’ . . / data / p l a y e r s . dat ’ ,
sep= ’ \ t ’ , h e a d e r=T)

names ( x )
x
x [ 2 , ]
x$ age
i s . data . f rame ( x )
w r i t e . c s v ( x , ’ /tmp/ p l a y e r s . c s v ’ , row . names=F )

## s o r t by g o a l s s c o r e d .
x [ o r d e r (−x$ g o a l s ) , ]

See ?read.table.

72 / 121



Rdata files
Text files are useful for portably storing data, so that they can be read
across applications. R has its own format for efficiently storing objects. Files
much smaller than text files. However, this format is not universally known.

n <− 99999 ; x <− rnorm ( n )
t x t . f i l e <− ’ /tmp/my rnorm . t x t ’
rda . f i l e <− ’ /tmp/my rnorm . rda ’
w r i t e ( x , n , f i l e =t x t . f i l e )
s a v e ( x , n , f i l e =rda . f i l e )

## Compare s i z e s o f f i l e s w i t h th e o b j e c t .
o b j e c t . s i z e ( x )
f i l e . i n f o ( t x t . f i l e ) $ s i z e
f i l e . i n f o ( rda . f i l e ) $ s i z e ## c o m p r e s s i o n ?

rm ( x , n )
l o a d ( rda . f i l e ) ## r e l o a d data .

73 / 121

Saving your workspace with .RData files

When you quit R, you are asked:

> q()
Save workspace image? [y/n/c]:

If you answer y, all objects in your global environment are saved for future
use, using save.image. From ?save:

’save.image()’ is just a short-cut for "save my current
workspace", i.e., ’save(list = ls(all=TRUE), file = ".RData")’.
It is also what happens with ’q("yes")’.

If an .RData file is present in your current directory when you start R, it is
silently loaded. This may be useful, but I think it can be dangerous, as you
may not realise what values have been silently loaded.
Here, “all objects” means all your variables and functions.

74 / 121

Further I/O functions (Advanced)

R has many facilities for I/O. See for example the following help topics.

• ?connections — interface to files, pipes, sockets, compressed files . . .

• ?sink — divert R output to a connectin

• ?dget / ?dput — read/write ASCII representation of an R object.

75 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
76 / 121

.RData


Writing functions: overview

• Why bother?

• How to write (local args, return value; cannot change value)

• Example: computing std. deviation

• Local variables within functions

• Recursion.

77 / 121

Functions
• Functions promote code reuse.
• Black-box approach; given inputs, what output should I expect? This

requires good documentation of what your function does. Can it be
described without having to look at the code?

• Finding the right level of definition for a function is hard, and how to
modularise comes with experience. Typically rewrite many times before
getting final solution

• How to define a new function:

my . fun <− f u n c t i o n ( arg1 , arg2 , . . . ) {
## Doc s t r i n g h e r e .
x <− arg1 ∗ 2
y <− s q r t ( arg2 ) + 5
z <− x ∗ y
## l a s t v a l u e i s th e r e t u r n v a l u e o f t he f u n c t i o n .
## Use a l i s t to r e t u r n s e v e r a l i t e m s .
z

}
78 / 121

Example of writing a new function
Compute the standard deviation of a vector of numbers:

std .dev =

√∑n
i=1(xi − x̄)2

n − 1
where x̄ =

∑n
i=1 xi

n

s t d . dev <− f u n c t i o n ( x ) {
## Return s t d dev o f X .
n <− l e n g t h ( x )
x b a r <− sum ( x ) /n
d i f f <− x − x b a r
sum . sq <− sum ( d i f f ˆ2)
v a r <− sum . sq / ( n−1)

## l a s t v a l u e c a l c u l a t e d i s r e t u r n v a l u e .
s q r t ( v a r )

}
79 / 121

Terminology of variables within functions
• In std.dev, x is the name of a formal argument. In the following, y is

called the actual argument (doesn’t have to be named x – can be
named however you wish).

n <− 5
y <− c ( 9 , 2 , 7 , 10)
s t d . dev ( y )
p r i n t ( n ) ## s h o u l d s t i l l be 5 , not 4 .

• Local variables within function are not available outside of function.
• Any change to formal args within a function does not change value of

actual argument outside the function:

sum . sq <− f u n c t i o n ( x ) {
x <− x ˆ2 ## change i n t e r n a l l y
sum ( x )

}
y <− c ( 4 , 5 , 6)
sum . sq ( y )
y 80 / 121



Handling unbound variables
Variables created by assignment within a function are known as local
variables (e.g. y below). If a variable is not a local variable, or formal
argument, then we call it an unbound variable. An unbound variable may
then be found in the enclosing environment (typically the global workspace),
or if it cannot be found, an error is generated.

fn 1 <− f u n c t i o n ( x ) {
y <− x ˆ2
r e s <− sum ( ( y − t h r e s h )ˆ2 )
r e s

}

dat <− 1 : 5
fn 1 ( dat ) ## c a s e 1

t h r e s h <− 10
fn 1 ( dat ) ## c a s e 2

Advanced: use codetools :: checkUsage() to find unbound vars.
81 / 121

Handling unbound variables (2)

In this case, better to define thresh as an argument of the function, and
provide a default value:

fn 1 <− f u n c t i o n ( x , t h r e s h =10) {
y <− x ˆ2
r e s <− sum ( ( y − t h r e s h )ˆ2 )
r e s

}
fn 1 ( dat ) ## c a s e 3

82 / 121

Writing a replacement function (Advanced)

Convention for a replacement function is that the name should end with
<−. The last argument of the replacement function must be called VALUE
and is the RHS of the assignment.

” t h r e s h o l d<−” <− f u n c t i o n ( x , v a l u e ) {
## X i s th e o b j e c t to update
## VALUE i s the v a l u e on t he RHS .
y <− i f e l s e ( x>v a l u e , 1 , 0)
y ## r e t u r n new v a l u e .

}
x <− c ( 0 . 3 , 0 . 1 , 0 . 6 , 0 . 7 , 0 . 9 , 0 . 2 )
t h r e s h o l d ( x ) <− 0 . 4
x

83 / 121

Tips for writing functions

• Can you think of a way to break down the problem so that a team can
work on the problem, with each person assigned to a independent
piece? “Divide + conquer”.

• Each function should be easy to test, then you can “freeze” it. Write
test cases, which can be automatically checked.

a l l . e q u a l (my . fun ( 1 0 0 , 2 0 0 ) , 300)

• Rule of thumb: each function should be no more than a page or two of
code.

• For large projects, avoid mixing computation and plotting in the same
function – separate the two jobs; this makes it easier to run in batch.

r e s <− some . computat ion ( par1 , par2 , par3 )
p l o t . r e s u l t s ( r e s )

84 / 121



Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
85 / 121

Control-flow constructs

• if

• switch

• for

• while

• Vectorization

• simple applications – numerics

86 / 121

if / if ... else ...

x <− 8 ;

i f ( x > 10) {
## c o n d i t i o n was t r u e
c a t ( ”x i s b i g g e r than 10\n” )

} e l s e {
c a t ( ”x i s 10 or l e s s \n” )

}

Notes:
“else ...” can be omitted if you do not need it.
if returns a value, which can be assigned, e.g. y <− if (x <10) 40 else 20.
A better solution in this case however is the vectorized form
y <− ifelse (x<10, 40, 20)

87 / 121

Braces in conditional constructs
Curly braces not needed if there is only one expression in the if clause:

i f ( x > 10 ) {
y <− 1

}

i f ( x > 10 )
y <− 1

But braces are needed in multiline if/else statement:

i f ( x > 10 ) {
y <− 1

} e l s e {
y <− 0 ## OK

}

i f ( x > 10 )
y <− 1

e l s e
y <− 0 ## NOT OK

From ?Control: Note that it is a common mistake to forget to put
braces (’{ .. }’) around your statements, e.g., after ’if(..)’ or
’for(....)’. In particular, you should not have a newline between
’}’ and ’else’ to avoid a syntax error in entering a ’if ... else’
construct at the keyboard or via ’source’. For that reason, one
(somewhat extreme) attitude of defensive programming is to always
use braces, e.g., for ’if’ clauses.

88 / 121



switch (Advanced)

Nested if ... else commands can get a bit messy. Like other languages, R
has a switch construct. From ?switch:

centre <- function(x, type) {
switch(type,

mean = mean(x),
median = median(x),
trimmed = mean(x, trim = .1))

}
x <- rcauchy(10)
centre(x, "mean")
centre(x, "median")
centre(x, "trimmed")

89 / 121

Recursive functions

Here is an example of using conditionals with a divide and conquer
approach; quicksort in a few lines (albeit not very efficient). qsort.R

q s o r t <− f u n c t i o n ( data ) {
## Sor t DATA i n t o a s c end i ng o r d e r .
n <− l e n g t h ( data )
i f ( n <= 1) {

data
} e l s e {

p i v o t <− data [ f l o o r ( n/ 2 ) ]
l e s s <− data [ which ( data < p i v o t ) ]
equa l <− data [ which ( data == p i v o t ) ]
g r e a t e r <− data [ which ( data > p i v o t ) ]
c ( q s o r t ( l e s s ) , equa l , q s o r t ( g r e a t e r ) )

}
}

r e p l i c a t e (99 , {
data <− r u n i f (2000 , max=10)
a l l . e qua l ( q s o r t ( data ) , s o r t ( data ) ) } )

90 / 121

Looping constructs

Looping constructs allow you to repeat calculations as many times as you
wish. This is why computers are so useful – it is just as easy (usually) to
repeat something 1000 times as 10 times.

e.g. if you want to simulate flipping a (biased) coin 100 times, and counting
the number of heads, no problem. If you want to repeat this process 1000
times, no problem. See later.

91 / 121

for loops

for (var in seq) command

SEQ is a vector; VAR is set in turn to each value in the vector, and then
command executed. Multiple commands can be given within braces.
e.g.

x <− 6
f o r ( i i n 1 : 1 0 ) {

r e s <− x ∗ i
c a t ( x , ”∗” , i , ”=” , r e s , ”\n” )

}

92 / 121

qsort.R


while loops

while (condition) {
command
command

}

So the commands are executed until the condition is no longer true.
Typically then one of the commands will change the condition.
e.g. print all the Fibonacci numbers (f[i] = f[i-1] + f[i-2]) less than 100.

n1 <− 0 ; n2 <− 1
w h i l e ( n2 < 100) {

p r i n t ( n2 )
o l d <− n2
n2 <− n2 + n1
n1 <− o l d

}

93 / 121

Breaking out of loops
repeat expr will repeatedly execute expr until you break out of the loop.

i <− 3
r e p e a t {

i f ( i ==10) {
b r e a k

} e l s e {
c a t ( ” i i s ” , i , ”\n” )
i<− i +1

}
}
next allows you to skip to next iteration of a loop. Both next and break can
be used within other loops (while, for).

f o r ( i i n 1 : 1 0 ) {
i f ( ( i %% 2) == 0)

n e x t
p r i n t ( i )

}
94 / 121

A word on indentation

Indentation helps you see the flow of the logic, rather than flattened version.
(Use tab key to indent). Reformatting tools are available (e.g. within
Emacs).

## v e r s i o n 1 .
i <− 3
r e p e a t {

i f ( i ==10) {
b r e a k

} e l s e {
c a t ( ” i i s ” , i , ”\n” )
i<− i +1

}
}

## v e r s i o n 2 .
i <− 3
r e p e a t {
i f ( i ==10) {
b r e a k
} e l s e {
c a t ( ” i i s ” , i , ”\n” )
i<− i +1
}
}

Indentation helps to show structure, and match braces.

95 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
96 / 121



Vectorization
When possible, operate on vectors, rather than using for loops.
Rewrite code, but beware sometimes not possible (Fibonacci). e.g. compute
difference between times of events, e. Given n events, there will be n-1
inter-event times. interval[i] = e[i+1] - e[i]

d i f f 1 <− f u n c t i o n ( e ) {
n <− l e n g t h ( e )
i n t e r v a l <− r ep (0 , n−1) ## good to pre−a l l o c !
f o r ( i i n 1 : ( n−1)) {

i n t e r v a l [ i ] <− e [ i +1] − e [ i ]
}
i n t e r v a l

}
d i f f 2<− f u n c t i o n ( e ) {

n <− l e n g t h ( e )
e [−1] − e [−n ]

}

e <− c (2 , 5 , 10 . 2 , 12 , 19)
d i f f 1 ( e )
a l l . e qua l ( d i f f 1 ( e ) , d i f f 2 ( e ) )

Advantages: shorter, more readable, faster (no loops).
97 / 121

Vectorization example
Q: Flip a biased coin [p=0.6 of heads] 100 times; how many heads do you
get? Repeat this for 1000 trials.

n <− 100 ## number o f c o i n f l i p s i n t r i a l
p <− 0 . 6 ## prob o f g e t t i n g heads
n t r i a l s <− 1000

t r i a l 1 <− f u n c t i o n (n , p . heads ) {
count <− 0
f o r ( i i n 1 : n ) {

i f ( r u n i f ( 1 ) < p . heads )
count <− count +1

}
count

}

r e s <− r ep (0 , n t r i a l s )
f o r ( j i n 1 : n t r i a l s ) {

r e s [ j ] <− t r i a l 1 (n , p )
}
h i s t ( r e s )

t r i a l 2 <− f u n c t i o n (n , p . heads ) {
rand . v a l s <− r u n i f ( n )
sum( rand . v a l s < p . heads )

}

r e s <− r e p l i c a t e ( n t r i a l s ,
t r i a l 2 (n , p ) )

h i s t ( r e s )

In this case, hist ( rbinom(1000, 100, 0.6)) would also work!

98 / 121

Vectorization example
Q: Flip a biased coin [p=0.6 of heads] 100 times; how many heads do you
get? Repeat this for 1000 trials.

n <− 100 ## number o f c o i n f l i p s i n t r i a l
p <− 0 . 6 ## prob o f g e t t i n g heads
n t r i a l s <− 1000

t r i a l 1 <− f u n c t i o n (n , p . heads ) {
count <− 0
f o r ( i i n 1 : n ) {

i f ( r u n i f ( 1 ) < p . heads )
count <− count +1

}
count

}

r e s <− r ep (0 , n t r i a l s )
f o r ( j i n 1 : n t r i a l s ) {

r e s [ j ] <− t r i a l 1 (n , p )
}
h i s t ( r e s )

t r i a l 2 <− f u n c t i o n (n , p . heads ) {
rand . v a l s <− r u n i f ( n )
sum( rand . v a l s < p . heads )

}

r e s <− r e p l i c a t e ( n t r i a l s ,
t r i a l 2 (n , p ) )

h i s t ( r e s )

In this case, hist ( rbinom(1000, 100, 0.6)) would also work!

99 / 121

Vectorization example
Q: Flip a biased coin [p=0.6 of heads] 100 times; how many heads do you
get? Repeat this for 1000 trials.

n <− 100 ## number o f c o i n f l i p s i n t r i a l
p <− 0 . 6 ## prob o f g e t t i n g heads
n t r i a l s <− 1000

t r i a l 1 <− f u n c t i o n (n , p . heads ) {
count <− 0
f o r ( i i n 1 : n ) {

i f ( r u n i f ( 1 ) < p . heads )
count <− count +1

}
count

}

r e s <− r ep (0 , n t r i a l s )
f o r ( j i n 1 : n t r i a l s ) {

r e s [ j ] <− t r i a l 1 (n , p )
}
h i s t ( r e s )

t r i a l 2 <− f u n c t i o n (n , p . heads ) {
rand . v a l s <− r u n i f ( n )
sum( rand . v a l s < p . heads )

}

r e s <− r e p l i c a t e ( n t r i a l s ,
t r i a l 2 (n , p ) )

h i s t ( r e s )

In this case, hist ( rbinom(1000, 100, 0.6)) would also work!
100 / 121



apply family

e.g. how to compute sum of each row of a matrix? sum(A) will normally
return the sum of all elements of A.

apply(X, MARGIN, FUN, ...)
MARGIN = 1 for row, 2 for cols.
FUN = function to apply
... = extra args to function.

A <− m a t r i x ( 1 : 6 , 2 , 3 )
row . means <− a p p l y (A, 1 , mean )
c o l . sums <− a p p l y (A, 2 , sum , na . rm=T)

Other functions: lapply (apply to list), sapply (simplify), replicate.

l a p p l y ( l s ( ) , o b j e c t . s i z e )
s a p p l y ( l s ( ) , o b j e c t . s i z e )
h i s t ( r e p l i c a t e (200 , mean ( rnorm ( 1 0 0 ) ) ) )

101 / 121

Anonymous functions (Advanced)

Sometimes you don’t want to pollute name space by defining a new function,
so just use an “anonymous function”, i.e. a function without a name.
Particularly useful e.g. in an apply call.

my . mat <− m a t r i x ( 1 : 1 0 , n c o l =5)
a p p l y (my . mat , 2 , f u n c t i o n ( x ) { sum ( x ˆ2)+10 } )

Since functions are just objects, anonymous functions are just objects
without names, similar to ’anonymous numbers’ like a+b in an expression
a+b+c.

102 / 121

Fibonacci sequence

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

f [n] = f [n − 1] + f [n − 2]

How to vectorize?
Exercise: write a function, fibonnaci(n) that returns the nth element of the
sequence. Assume that fibonnaci(1) = 0, fibonacci(2) = 1.
Exercise: use fibonacci() to estimate the golden ratio.

103 / 121

Efficiency

Knuth: “premature optimization is evil” quote (WSS book).
Examples adopted from www.mathworks.com/res/code_segments
f1 is bad; should pre-allocate vector, rather than rely on R to allocate
memory repeatedly (as seen by high ‘system’ time).

f 1 <− f u n c t i o n ( ) {
n <− 1e4 ; decay <− 0 .9995

out <− 1 .0
f o r ( i i n 2 : n )

out [ i ] <− out [ i −1] ∗ decay
out

}

f 2 <− f u n c t i o n ( ) {
n <− 1e4 ; decay <− 0.99995
out <− r ep (0 , n ) ##pre−a l l o c
out [ 1 ] <− 1 .0
f o r ( i i n 2 : n )

out [ i ] <− out [ i −1] ∗ decay
out

}

system . t ime ( o1 <− f 1 ( ) )
system . t ime ( o2 <− f 2 ( ) )

104 / 121

www.mathworks.com/res/code_segments


Numerics issues

Although integer arithmic is reliable, floating-point arithmetic is to be
treated with care! (All R’s calculations are in what C programmers call
“double precision”.)

1 + 2 == 3
. 1 + . 2 == . 3

From FAQ (7.31?)

a <− s q r t ( 2 )
a ∗ a == 2
a ∗ a − 2

How can we find out biggest and smallest numbers that can be stored in a
double precision number?

105 / 121

How big is infinity?

Use while loop to estimate it:

x <− 1
w h i l e ( i s . f i n i t e ( x∗ 2) ) {

x <− x∗2
}

> x
[ 1 ] 8 .988466 e+307
> x∗2
[ 1 ] I n f
> ( x∗ 2) /2
[ 1 ] I n f

. Machine $ d o u b l e . xmax
[ 1 ] 1 .797693 e+308

106 / 121

How small is epsilon?
How big can ε be such that 1 + ε = 1? (Taken from Goldberg (1991) ACM
article, p220).

eps <− 1
w h i l e ( eps + 1 > 1) {

eps <− eps ∗ 0 . 5
}
> eps
[ 1 ] 1 .110223 e−16
> 1 + eps
[ 1 ] 1
> (1 + eps == 1)
[ 1 ] TRUE
> 1 + (2 ∗ eps )
[ 1 ] 1
> (1 + (2 ∗ eps ) == 1)
[ 1 ] FALSE

107 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
108 / 121



Random number generation

Computers usaully generate “pseudo-random numbers”. They are generated
based on some iterative formula:

xnew = f (xold) mod N

where modulo operation provides the “remainder” division.
To generate the first random number, you need a seed.
Setting the seed allows you to reliably generate the same sequence of
numbers, which can [rarely] be useful when debugging programs.
R has many routines for generating random samples from various
distributions (See A.L.’s lecture ), but for now we will just use runif(), (and
maybe rnorm()).
Exercise: write a random number generator. See: “Randu: a bad random
number generator”. http://physics.ucsc.edu/~peter/115/randu.pdf
Exercise: Apply the central limit theorem to generate samples from a
normal distribution by adding together samples from a uniform distribution.

109 / 121

Outline
Vectors

Calling functions

Scripts

Matrices

Boolean logic

Lists

Factors

Character arrays

Objects in your environment

Basic plotting

Reading/writing data to file system

Writing functions

Conditionals and looping

Vectorization

Random number generation

Debugging
110 / 121

Debugging (Advanced)

See An introduction to the Interactive Debugging Tools in R, Roger
D Peng for detailed usage.
http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf

• warnings vs errors; converting warnings to errors; stopifnot().

• what to do when I get an error: traceback()

• simple print statements are often useful.

• Use of browser() at key points in code.

• debug(fn), undebug(fn)

• Using recover() rather than browser()

111 / 121

Warnings and errors

• A warning is softer than an error; if a warning is generated your
program will still continue, whereas an error will stop the program.

l o g ( c ( 2 , 1 , 0 , −1, 2 ) ) ; p r i n t ( ’ end ’ ) # warn ing
x o r ( c (TRUE, FALSE ) ) ; p r i n t ( ’ end ’ ) # e r r o r

• If you try to isolate warnings, you can change warnings to errors:
options(warn=2). See ?options for further details.

• Add warnings and errors to your code using warning(), stop().

• Can add “assertions” into your code to check that certain values hold.

s t o p i f n o t ( x>0)

• Other useful safety checks: all (x>0), any(x>0)

112 / 121

http://physics.ucsc.edu/~peter/115/randu.pdf
http://www.biostat.jhsph.edu/~rpeng/docs/R-debug-tools.pdf


Traceback
When your program generates an error, use traceback() to find out where it
went wrong:

s t a r t <− f u n c t i o n ( ) { go ( s q r t ( 1 0 ) ) }
go <− f u n c t i o n ( x ) { i n n e r ( x , ’−13 ’ )}
i n n e r <− f u n c t i o n ( a , b ) {

c <− s q r t ( b )
a ∗ l o g ( c )

}

> s t a r t ( )
E r r o r i n s q r t ( b ) : Non−numer ic argument to
m a t h e m a t i c a l f u n c t i o n
> t r a c e b a c k ( )
3 : i n n e r ( x , ”−13” )
2 : go ( s q r t ( 1 0 ) )
1 : s t a r t ( )

113 / 121

Single-stepping through your code

Use browser() to single-step through your code. Place it within your
function at the point you want to examine (e.g.) local variables.

Can use debug(function.name) to step through entire function. undebug()
will remove that debug call.
Within the browser, you can enter expressions as normal, or you can give a
few debug commands:

• n: single-step

• c: exit browser and continue

• Q: exit browser and abort, return to top-level.

• where: show stack trace.

Debug on stddev.R

114 / 121

Safety-checks: browser
Here’s a possible usage of browser() that I have in my code:
f i n d . h i gh <− f u n c t i o n ( x , t ) {

## Return samples i n x b i g g e r than t .
## ( Be t t e r to use x [ x>t ] i n r e a l− l i f e ! )
max . l e n g t h <− 100 ## shou ld be upper l i m i t . . .
r e s u l t s <− r ep (0 , max . l e n g t h )
coun t e r <− 0
f o r ( i i n x ) {

i f ( i > t ) {
coun t e r <− coun t e r + 1
i f ( coun t e r > max . l e n g t h ) {

browse r ( )
} e l s e {

r e s u l t s [ c oun t e r ] <− i
}

}
}
r e s u l t s [ 1 : c oun t e r ]

}
x <− rnorm (100)
f i n d . h igh ( x , 0 . 7 )

x <− rnorm (1000)
(1− pnorm ( 0 . 7 ) ) ∗ l e n g t h ( x ) ## expec t ed .
f i n d . h i gh ( x , 0 . 7 )

115 / 121

recover

recover() is like browser, except you can choose which level to inspect,
rather than the level at which browser was called.
Following allows recover() to be launched when you hit an error:

o p t i o n s ( e r r o r=r e c o v e r )

Here we simply tell R that when an error is generated, we call the function
“recover”. The default is NULL, in which case stop is called.

From ?options:

Note that these need to specified as e.g. ’options=utils::recover’ in
startup files such as ’.Rprofile’.

116 / 121

stddev.R


Reproducible research: Sweave and vignettes

• Use one file to store code and document. Best shown by way of
example... estimate.Rnw

• Vignettes often used in Bioconductor to document packages.

• > library (tkWidgets); vExplorer ()
Interactively explore vignettes.

117 / 121

Packages

• R has a packaging system for external code.

• A package is loaded from a library using library (pkg.name).

• Beware: don’t call a package a library! A library is a group of folders
where packages are stored . . .

l i b r a r y ( ) ## view a v a i l a b l e packages
l i b r a r y ( h e l p=c l u s t e r ) ## what ’ s i n t h i s ?
l i b r a r y ( c l u s t e r ) ## l o a d package
example (pam) ## can use pam and f r i e n d s .
de ta ch ( ” package : c l u s t e r ” ) ## remove pkg .

118 / 121

CRAN: Comprehensive R Archive Network

CRAN: Site(s) for downloading R, and also its many contributed *packages*.
Mac/Win have a GUI for installing packages, or it can be done on the
command line:

l i b r a r y ( s t a t s )
l i b r a r y ( h e l p=s t a t s )
i n s t a l l . packages ( c ( ” s p l a n c s ” , ” sp ” ) )
$ R CMD INSTALL mypackage . t a r . gz ## from s h e l l

If asked to selected a CRAN mirror, in UK use:
http://www.stats.bris.ac.uk/R.
If installing on a machine where you do not have root access (e.g. PWF
linux), you should add the following to your .bashrc file:

export R_LIBS=$HOME/NOBACKUP/RLIB

(Be careful! Check that you are not overwriting an existing R LIBS setting.)

119 / 121

Bioconductor

A success story of R. Started 2001 with aims to:

• provide access to stat/graphical methods for analysis of genomic data.

• link seamlessly to on-line databases (PubMed/GenBank).

• allow rapid development of extensible software.

• provide training in methods (short courses).

• promote software with high quality docs and reproducible research
(vignettes) . . .

• Gentleman et al. (2004) Genome Biology 5:R80.
http://genomebiology.com/2004/5/10/R80

120 / 121

estimate.Rnw
http://www.stats.bris.ac.uk/R
http://genomebiology.com/2004/5/10/R80


Other topics of interest (Advanced)

• Building your own packages. Useful for packaging up your code, data
sets and documentation. You may wish to do this for large projects
that you wish to share with others. Read Writing R Extensions manual
and see package. skeleton to get started.

• Access to databases. Computational Biology datasets are often quite
large, and you might wish to access data via databases. R package DBI
provides common interface to SQLite, MySQL, Oracle. See Gentleman
(2008), Chapter 8.

121 / 121


	Vectors
	Calling functions
	Scripts
	Matrices
	Boolean logic
	Lists
	Factors
	Character arrays
	Objects in your environment
	Basic plotting
	Reading/writing data to file system
	Writing functions
	Conditionals and looping
	Vectorization
	Random number generation
	Debugging

