
Evolutionary modeling 1

Evolutionary triplet models of structured RNA: Text S2

Robert K. Bradley1, Ian Holmes1,2,∗

1 Biophysics Graduate Group, University of California, Berkeley, CA, USA

2 Department of Bioengineering, University of California, Berkeley, CA, USA

∗ E-mail: indiegram@postbox.biowiki.org

Evolutionary modeling 2

Contents

1 Exact elimination of SCFG null cycles 3

1.1 Definitions . 3

1.2 Eliminating null bifurcations . 5

1.3 Eliminating null states . 7

1.4 Restoring null states . 8

1.5 Restoring null bifurcations . 8

Evolutionary modeling 3

1 Exact elimination of SCFG null cycles

The following section describes how to transform any SCFG so as to remove null cycles while preserving

access to the full posterior probability distribution over parses, including parses with null cycles.

1.1 Definitions

Let G = (Ω,N ,R, P) be a stochastic context-free grammar (SCFG) consisting of a set of terminal symbols

Ω, a set of nonterminal symbols (a.k.a. “states”) N , a set R of production rules L → R (where L ∈ N

and R ∈ (N ∪ Ω)∗) and a probability function on the rules, P : (N × (N ∪ Ω)∗)→ [0,∞).

Let L(A) be the set of rules that can be applied to nonterminal A ∈ N (i.e., rules in which A appears

on the left), and let R(A) be the set of rules that can generate nonterminal A (i.e.,rules in which A

appears on the right, including bifurcations which also generate another nonterminal as well as A). Let

A(A) = L(A) ∪ R(A) be the set of all rules involving A. Define these also on sets of nonterminals, e.g.,

L(N) =
⋃

A∈N L(A) for N ⊆ N .

Let T be the set of all parse trees for G. Suppose that parse tree T ∈ T makes nT (ρ) uses of rule ρ;

then define the parse tree likelihood P (T) =
∏

ρ∈R [P (ρ)]nT (ρ).

If
∑

T∈T P (T) = 1, we say that G is probabilistically normalized by parse tree. If
∑

ρ∈L(A) P (ρ) = 1

for all A ∈ N , we say that G is probabilistically normalized by production rule. Note that normalization

by production rule ⇒ normalization by parse tree.

Let S ∈ Ω∗ denote a terminal sequence. Let seq : T → Ω∗ be the function mapping a parse tree to its

terminal sequence. and let root : T → N be the function returning the root nonterminal of a parse tree.

The inside probability of S rooted at A is P (S|A) =
∑

T :seq(T)=S,root(T)=A P (T). Of particular relevance

to null state elimination is the probability P (ε|A), where ε is the empty sequence. This is the probability

that a nonterminal A will expire without generating any sequence.

Following earlier formalisms [1–3], we say that the grammar G has RNA normal-form rules if each

rule in R takes one of the following four forms:

Termination rules with one nonterminal on the left and the empty string on the right

A → ε

Evolutionary modeling 4

Transition rules with one nonterminal on the left and the right

A → B

Bifurcation rules with one nonterminal on the left and two on the right

A → B C

Emission rules with one nonterminal on the left and right and at least one terminal on the right

A → x B

A → B y

A → x B y

Here A,B, C ∈ N and x, y ∈ Ω.

Suppose that grammar G has RNA normal-form rules. We further say that G has RNA normal-form

states if each nonterminal (state) A ∈ N takes one of the following forms:

Null states : L(A) contains only transition and termination rules.

Bifurcation states : L(A) contains exactly one bifurcation rule, A → X Y , where X 6= Y and X, Y

are both null states.

Emit states : L(A) contains only emission rules. Further, L(A) = R(B) for some null state B. This

null state B is called A’s post-emit state.

Define a null cycle to be a nonterminal A and a sequence of rules ρ1, ρ2 . . . ρk that, when applied

consecutively to A, leave A unchanged; that is, ρk(ρk−1 . . . ρ2(ρ1(A))) = A. Define a null subtree to be a

null cycle using at least one bifurcation rule.

Evolutionary modeling 5

Suppose that G = (Ω,N ,R, P) and G′ = (Ω,N ′,R′, P ′) are two grammars. We say that G and

G′ are equivalent in sequence if there is a mapping between nonterminals, f : N → N ′, such that

P (S|A) = P (S|f(A)). We say that G and G′ are equivalent in parse if there is a mapping between parse

trees, g : T → T ′, such that P ′(T ′) =
∑

T :T ′=g(T) P (T) and we can define

P (T |T ′) = P (T |g(T) = T ′) =
P (T)
P ′(T ′)

Note that equivalence in parse ⇒ equivalence in sequence.

Suppose that a grammar G contains null cycles. We seek to transform G into a grammar G′′ that is

equivalent in parse and sequence, but has no null cycles. If G is normalized by parse tree, then G′′ will

be too; but G′′ is not (necessarily) normalized by production rule.

We do the transformation in two steps, G → G′ → G′′. We also provide a stochastic “null cycle

restoration” algorithm for sampling from P (T |T ′′).

1.2 Eliminating null bifurcations

Note first that any SCFG can be transformed into an equivalent one with RNA normal-form states by

adding null states. Without loss of generality, we therefore consider SCFGs with RNA normal-form

states.

Let G = (Ω,N ,R, P) be such an SCFG. Let N ⊆ N be the set of null states in N , excluding

post-emit states. Let E ⊂ N be the set of post-emit states. Let B ⊆ N be the set of bifurcation states.

We here define the grammar G′,

G′ = (Ω,N ′,R′, P ′)

which is equivalent to G in sequence but has no null subtrees.

The new states N ′ are defined as follows. Start with N ; remove bifurcation states; then introduce a

new state N ′ for every null N ∈ N and three new states B0, B′, B2 for every bifurcation B ∈ B.

N ′ =

(⋃
N∈N

{N ′}

)
∪

(⋃
B∈B

{B0, B′, B2}

)
∪N \B

The idea is that N ′ (in G′) is a null state that is equivalent to null state N (in G) for non-empty

sequence only. That is, for any terminal sequence S,

Evolutionary modeling 6

P ′(S|N ′) =

 P (S|N) if S 6= ε

0 if S = ε

Similarly, B′ is a null state that is equivalent to bifurcation state B for non-empty sequence, while

B2 is a null state that is is equivalent to B for parse trees where both children of B are non-empty.

In contrast, B0 is exactly equivalent to B in sequence. However, null subtrees in B0 are explicitly

accounted for, their probabilities factored into the transitions B′ → L′ and B′ → R′ and the termination

B0 → ε, using the inside probabilities for empty sequences, P (ε|L) and P (ε|R).

The probabilities P (ε|X) are related by the following system of equations

P (ε|X) = P (X → ε) +
∑
Y

P (X → Y)P (ε|Y) +
∑
L,R

P (X → LR)P (ε|L)P (ε|R)

which are nonlinearly coupled (via bifurcations) but may be solved numerically, e.g., by the Newton-

Raphson method, or by iterated approximation starting from a lower bound P (ε|X) ≥ 0.

The new rules and their probabilities are

∀ρ ∈ (R \ A(B)) : P ′(ρ) = P (ρ)

∀N ∈ N : P ′(N ′ → ε) = 0

. . .∀B ∈ B : P ′(N ′ → B′) = P (N → B)

. . .∀M ∈ N : P ′(N ′ →M ′) = P (N →M)

. . .∀E ∈ E : P ′(N ′ → E) = P (N → E)

∀(A→ B) ∈ R(B) : P ′(A→ B0) = P (A→ B)

∀(B → LR) ∈ L(B) : P ′(B0 → ε) = P (B → LR) P (ε|L) P (ε|R)

P ′(B0 → B′) = 1

P ′(B′ → ε) = 0

P ′(B′ → L′) = P (B → LR) P (ε|R)

P ′(B′ → R′) = P (B → LR) P (ε|L)

P ′(B′ → B2) = 1

P ′(B2 → L′ R′) = P (B → LR)

Note that grammar G′, like G, has RNA normal-form states. Note also that G′ is not, in general,

Evolutionary modeling 7

normalized by production rule; however, G′ is equivalent to G in parse and is therefore normalized by

parse tree (if G is).

1.3 Eliminating null states

We now proceed to eliminate null cycles from G′. Since null subtrees have been eliminated, the remaining

null cycles use only transition rules.

We create the grammar

G′′ = (Ω,N ′,R′′, P ′′)

which has the same nonterminals as G′, but different rules and rule probabilities.

Let N′ ⊆ N ′ be the set of null states in N ′, including post-emit states.

Define t, the transition matrix of G′, as tXY = P ′(X → Y) for all X, Y ∈ N ′. The effective transition

probability qXY between two states X, Y sums over all paths through null states (in the summand, n is

the length of the null path):

q =
∞∑

n=0

tn = (1− t)−1

Here 1 is the identity matrix. The matrix inverse may be computed in the usual ways (Gauss-Jordan

elimination, LU decomposition, etc.)

Since the bifurcation states of G′ explicitly generate non-empty sequence, the system of equations

relating the probabilities P ′(ε|X) is completely linear and may be solved in the same way. Let uX =

P ′(ε|X) and vX = P ′(X → ε). Then

u = v + tu

whose solution is u = qv. Thus P ′(ε|X) =
∑

Y qXY P ′(Y → ε).

We now define P ′′ as follows.

• For all rules ρ ∈ R′ that are not transitions or terminations, set P ′′(ρ) = P ′(ρ).

• For terminations from null states X ∈ N′, set P ′′(X → ε) = uX . (NB this may create some

terminations X → ε that were not present in G′.)

• For transitions from null states X ∈ N′ to non-null states Y /∈ N′, set P ′′(X → Y) = qXY . (NB

Evolutionary modeling 8

this may create some transitions X → Y that were not present in G′.)

• For transitions to null states X ∈ N′, set P ′′(A→ X) = 0.

Although we have left null states in G′′, they now have no incoming transitions and are inaccessible

unless they are post-bifurcation states (i.e.,states which appear on the right-hand side of bifurcation

rules), post-emit states, or the start (root) state. All other null states can therefore be dropped from N ′′.

1.4 Restoring null states

Suppose that ρ′′ is a rule in G′′. Algorithm 1 samples from the distribution of equivalent parse subtrees in

G′ (possibly containing null cycles). In order to sample from P (T ′|T ′′) we need simply map Algorithm 1

to each rule in T ′′.

For parameter estimation by Expectation Maximization and some other applications, it is useful to

know the expected number of times that a transition was used, summed over the posterior distribution of

parse trees (including those with null cycles). If n′′(ρ′′) is the expected number of times that transition

ρ′′ was used according to an Inside-Outside computation on G′′, then the corresponding expectations

n′(ρ′) are given by

n′(X → Y) = n′′(X → Y)
P ′′(X → Y)

qXY
+
∑
Z

n′′(X → Z)
P ′′(X → Y)qY Z

qXZ

n′(X → ε) = n′′(X → ε)
P ′′(X → ε)
P ′′(ε|X)

+
∑
W

n′′(W → ε)
qWXP ′′(X → ε)

P ′′(ε|W)

Expectations for other rules (bifurcations and emissions) are the same for G′ as G′′.

1.5 Restoring null bifurcations

Suppose that ρ′ is a rule in G′. Algorithm 2 samples from the distribution of equivalent parse subtrees

in G (possibly containing null subtrees). This algorithm also calls Algorithm 3, which samples from the

distribution of empty subtrees rooted at a particular nonterminal. In order to sample from P (T |T ′) we

need simply map Algorithm 2 to each rule in T ′.

If n′(ρ′) is the expected number of times that rule ρ′ was used by G′, then the corresponding expec-

tations n(ρ) are given by

Evolutionary modeling 9

n(B → L R) = n′(B′ → L′) + n′(B′ → R′) + n′(B0 → L′ R′) + d(B → L R)

n(X → Y) = n′(X → Y) + d(X → Y)

n(X → ε) = n′(X → ε) + d(X → ε)

Expectations for emissions are the same for G as G′. In the above expressions d(ρ) is the expected usage

of rule ρ by null subtrees:

d(ρ) =
∑

(B→LR)∈R

[
n′(B′ → L′)cR(ρ) + n′(B′ → R′)cL(ρ) + n′(B0 → ε)(cL(ρ) + cR(ρ))

]
where cW (ρ) is the expected usage of rule ρ by an empty parse tree rooted at W , given by

cX(ρ)P (ε|X) = P (X → ε)δρ=(X→ε) +
∑
Y

P (X → Y)P (ε|Y)
(
cY (ρ) + δρ=(X→Y)

)
+
∑
L,R

P (X → LR)P (ε|L)P (ε|R)
(
cL(ρ) + cR(ρ) + δρ=(X→LR)

)

where δU is the Kronecker delta (1 if condition U is true, 0 if it is false). Note that in contrast to the

system of equations for P (ε|X), this is a linear system of equations of the form c = Mc + k, which may

be solved by matrix inversion: c = (1−M)−1k.

References

1. Durbin R, Eddy S, Krogh A, Mitchison G (1998) Biological Sequence Analysis: Probabilistic Models

of Proteins and Nucleic Acids. Cambridge, UK: Cambridge University Press.

2. Holmes I, Rubin GM (2002) Pairwise RNA structure comparison using stochastic context-free gram-

mars. Pacific Symposium on Biocomputing, 2002.

3. Holmes I (2005) Accelerated probabilistic inference of RNA structure evolution. BMC Bioinformatics

6.

Evolutionary modeling 10

Algorithms

Input: Rule ρ′′ ∈ R′′

Output: Parse (sub)tree T ′ ∈ T ′
switch ρ′′ do

case X → Y
if Random[0,1] < P (X → Y)/qXY then

return (X → Y) ;
else

Let z =
∑

W qXW P ′(W → Y) ;
Sample state V from probability distribution P (V) = qXV P ′(V → Y)/z ;
return (restoreTransitions(X → V)→ Y) ;

end
end
case X → ε

if Random[0,1] < P ′(X → ε)/P ′(ε|X) then
return (X → ε) ;

else
Let z =

∑
W qXW P ′(W → ε) ;

Sample state V from probability distribution P (V) = qXV P ′(V → ε)/z ;
return (restoreTransitions(X → V)→ ε) ;

end
end
otherwise

return (ρ′′) ;
end

end

Algorithm 1: Subroutine restoreTransitions(ρ′′) for the null cycle elimination procedure.

Evolutionary modeling 11

Input: Rule ρ′ ∈ R′

Output: Parse (sub)tree T ∈ T
switch ρ′ do

case B0 → ε
Let B → L R be the original bifurcation in R ;
TL ← sampleNullSubtree(L) ;
TR ← sampleNullSubtree(R) ;
return (B → TL TR) ;

end
case B′ → L′

Let B → L R be the original bifurcation in R ;
TR ← sampleNullSubtree(R) ;
return (B → L TR) ;

end
case B′ → R′

Let B → L R be the original bifurcation in R ;
TL ← sampleNullSubtree(L) ;
return (B → TL R) ;

end
case B2 → L′ R′

Let B → L R be the original bifurcation in R ;
return (B → L R) ;

end
case B0 → B′ return () ;
case B′ → B2 return () ;
otherwise

Let ρ be the original rule in R ;
return (ρ) ;

end
end

Algorithm 2: Subroutine restoreBifurcations(ρ′) for the null cycle elimination procedure.

Input: Nonterminal A ∈ N
Output: Parse tree T ∈ T : seq(T) = ε, root(T) = A
if A is a bifurcation state, A→ X Y , then

TX ← sampleNullSubtree(X) ;
TY ← sampleNullSubtree(Y) ;
return (A→ TX TY) ;

else
if Random[0,1] < P (A→ ε)/P (ε|A) then

return (A→ ε) ;
else

Let z =
∑

Y P (A→ Y)P (ε|Y) ;
Sample state X from probability distribution P (X) = P (A→ X)P (ε|X)/z ;
TX ← sampleNullSubtree(X) ;
return (A→ TX) ;

end
end

Algorithm 3: Subroutine sampleNullSubtree(A) for the null cycle elimination procedure.

