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1 Notation

Indices p, ¢ and q, j refer to identities and attributes and run over the interval 1,. .., dp
and 1,...,dg, respectively. Indices k and [ refer to input dimensions and run over
1,...,dy. Capital letters stand for the set of all variables with the corresponding
lowercase letter (e.g., B = bi.11.4.). For simplicity, we will omit hyperparameters
from probability distributions and indicate random variables only. We define © to
be the set of all parameters.

2 Generative model

The conditional dependencies in the model are defined by the directed graph in
Figure 1.

2.1 Observations model

P(Y|B, A, 0) =[] P(y:[br,ar, W, p) (1)
t

= HNYt<Z Wy agp by p, 2?;) ’ (2)
t p

where ¥, = diag (,0,;1) and

d
e _
P(pi|d,e) = Gamma,, (d,e) = () pg Lexp(—epr) (3)
P(wkpq|’7pq) = kapq(oa%;;l) . (4)
2.2 Identity variables model
P(BIT) =] (P(bl,p) [1Peplbe-1s, T)> (5)
P t>1
P(bip = 1) =m0 (6)
P(bt,p = a|bt—1,p = ﬁ) = Tﬁ,a (7)
1
P(T) = [] Dirichlet ({Tﬁ,o, Ty} u(ﬁT)> (8)

=0



Figure 1: Directed graphical model representing the distribution of a single video
frame. Circles represent random variables, and rectangles represent hyperparame-
ters; the grey-filled circle represents the observed image; greyed symbols represent
variables associated with neighbouring frames. The dashed box indicates that the
variables within are replicated T times (the length of an input sequence) in the
complete model.

2.3 Attributes variables model

P(A|A) = H (P(al,p) Hp(at,p|at—1,paAp)> (9)

P t>1
P(aLp) = Nal,p(ov Ug) (10)
P(at,pq|at71,pqa )‘pq) = Nat,pq()‘pq at—1,pg;: 1 — >\}22q) (11)

The prior over the dynamics parameters A is conjugate, but it has an unconventional
form, because the mean and the standard deviation of a;pq are coupled. However, it
is still in the exponential family.

P(A) = HPO‘pq) (12)

1
P(pq) = 5 exp (=g log(1 = X2,) + @ () 0} ) (13)



where,

uy) = (fogs 9pas M) (14)
B(\) = ((1- )7 —)\2)‘1,)\2(1—)\2)‘1>T (15)

are the hyperparameters and the sufficient statistics, respectively.

3 Variational approximation

In addition to the approximation required by VBEM between parameters and latent
variables, another factorization is introduced to make the posterior tractable. This
is between different identity variables at different times. Moreover, we factorize the
distributions over the weights and the input noise to learn independently the signal
and noise distribution. All other factorizations arise naturally.

Q(A, B,W,T,A, p) (16)

= H H Qt,p(bt,py at,p) H Q(WPQ)Q(T)Q(A)Q(p) . (18)

An alternative factorization of the latent variables could be between identity and
attribute variables, keeping the temporal correlations intact:

Q(A,B) = [[ Qbr.1p)Qa1:1y) (19)

The distributions of by.7, and aj.7, can then be inferred using the forward-backward
algorithm and Kalman smoothing, respectively. This approximation leads to smoother
inferred signals. However, it is unclear which approximation is to be preferred for
learning, or whether it is possible to combine the two approximations to obtain a
more accurate estimation of the joint distribution. We experimented with initializing
the distribution for the second approximation using the result of the first, obtaining
encouraging results. For extensive runs, however, we used the first approximation
alone because the computations are much faster.

4 VBE-Step

Q(A, B) = H H Qt,p(bt,p, at,p) (20)
t p

From the VBEM theory [1] we know that the optimal approximation to the real



posterior is given by

Qtp(bep,arp) ocexp<log P(Y,B,A|®)>Q(®)Q N (21)
$,q sP

= exp | (log [T P(o1,) [T Plbrolbr-1,,,T))
p

t>1 Q(T)Qs,q;ﬁt,p :|

Fxp < o 1;[ g S Ap)>Q(Ap)Qs,q¢t,p ]

t>1

e lo P(y¢|be, ag, W,
P < 8 H (elbe, 20, W2 p )>Q(W)Q(9)Qs,q¢t,p}
x Qf,(B) QF,(A) QF,(B,A) (23)

Consider the first two terms, Q{ ,(B) and Q?yp(A). For1<t<T,

1
Qi p(bep) = -1 €XP [ Z Qu-1p(bi—1p) (log Ty, , ,b,,)

btfl,p
3 Quitplbrrig) (08 Thni,) | - (24)
biy1,p
Fort=1
1 1
QLp(bl,p) = ﬁ exXp [IOg P(bl,p) + Z QZ,P(bZP) <10g Tb1,p,b2,p>:| ) (25)
ba,p
and fort =T
1
Q1 p(bryp) = 71 eXP [ > Qro1p(br-1,) (log Tbel,p,bT,p” : (26)
br—1,p

It is important to normalize this distribution (i.e., to compute %), as we are going
to see later.
For the second term we get

Q?,p(atﬁD) = Nat,;;(“?,p? 27%,}7) ) (27)
where for 1 <t < T
71 _ _
Eg,p = <Ep 1> + <A£2p 1AP> (28)
T —1 _ _
“’?,p Eg,p = <at*1,P>T <Agzp 1> + <at+1,P>T <2p 1A11;> ) (29)

and A, = diag (\y) and X, =T — A2, For t = 1 we have

2 1 1 Ty—1
¥, = 0—21+<AP 3, Ap) (30)

T -1 _
p‘%p E%p = <a2p>T <2p 1A§> ) (31)



and fort =T
-1 _
2%’71) = <2p 1> (32)
2,32 o T(ATs ! 33
By X7, = (ar-1p) < p ~p > (33)

Putting everything together we obtain

Qt,p(bt,pa at,p) Qt,p(bt,p)Q%,p(at,p)

1
-exp<——ylog2w—§ZIng;1

Yt Z W; iag, iby z) (Yt — Z Wiat,ibt,i)> . (34)
For bt,P =0

1
Qrp(bep =0,2a1p) = EQ%,p@t,p = O)Q?,p(at,zﬂ

d 1
.exp<— ?ylog27r— §Zlogp,;1
k

1
35 (e — Z Wiat,ibm)Tz;l (ve — Z VVz‘at,z‘bt,i)> (35)
i#p i7p
1
=t Qb iy = 0@}, (ay) (36)

Since the last term in Eq. 35 does not depend on b;,, or a;,, we abbreviated it as a
constant C. For b, = 1 we get the same expression, plus an additional term

Qt,p(bt,p 1 at,p) C ) Q;p(bt,p = 1)Qg,p(at,p)

- exp { — % { — Z(yt — Z (Wi) (a,ibei) >T <2;1> (Wp) arp
iFp

+a,” (W, S, TW, ) ay, | } . (37)

Expanding Qip(at,p) as in Eq. 27 and collecting the terms that contain a;

Qup(bep =1, a1p) = *CC' - Qf p(bry = 1) Nay (B pr Stp) (38)
where
B =322 7 (W, W) (39)
ni S0, = 1, 22 Ty (.Yt - Z<W¢> <at,ibt,i>)T<2y_1> (Wp) (40)
i#p

1 1
C' = exp [— iloglﬂ ol log\Etp\

L o Tgo - L 7 -1
5/"'2& z]t,p “t,p+§“t,p2t,p“t,p:| (41)



We can obtain the normalization constant using the identity

1= / Qup(bep =0,a1p) dag, + / Qup(bep =1 arp) dagy (42)
7€ Qhyloy =0 [ QFary) da,
+ ;CC' Qtp bep = /Natp Bt Dip) dagy (43)
= 20 (@b = 0) + O Qlybup = 1)) . (44)
and thus
20 = (Qhy iy = 0) + O QL by =1) (45)

Notice that C' and C” depend on ¢ and p, although the indices have been dropped to
avoid clutter.

The distribution Q(B, A) can thus be obtained by first computing and normal-
izing Q;p(btyp) (Eq. 24-26); computing M%,p and Z?,p (Eq. 28-33); computing g, ,,
3 p, and C' (Eq. 39-41); computing the normalization constant (Eq. 45); and finally
computing the sufficient statistics as follows:

Qualbip = 1) = 50C' QL by = 1) (16)
<at,p> = Qt oy =1) py, + Qup(beyp = 0) pi (47)
<at,pbt,p> = Qtp(bep =1) Hip (48)
<(bt,pat,p)(bt pat,p)T>Qt7 = (Et,p + Nt,pﬂt,p) Qtp(bep = 1) (49)
LFp: <at7i atp >Qt Qi = (ay Z>Qt ; (a t,p>gt,p (50)

(ar at,iT>Qm. = Qrp(brp = 0) (27, + H?,pﬂg,pT)
+ Qep(beyp = 1) (Bep + “t,p“g:p) : (51)

5 VBM-Step
In the VBM-Step, functional maximization of the free energy for parameters © gives
Qo) = %P(@) exp (log P(Y, B, Al0)) (52)
Q(B,A)

5.1 Transition matrix T
We start with the distribution of the transition matrix T

; exp<logH( (b14) HP bt b1, )>> (53)

t>1

1 .
= H Dirichlet({Tyno, Tp1 Hul) - exp <ZZlog Tbt_17i,bt,i> . (54)

m=0 i t>1

Q(T) =



and since

1
<log Tbt—l,i,bt,i>Q(B7A) = Z <5(bt—1,i = m)><5(bt,i = n)> log Tinn, (55)

m,n=0
1
= Z Q(bt—1,i = m)Q(be;; = n)log Trun (56)

we obtain
1

1 1 (W) =145, oy Qbe—1,i=m)Q(br,i=n)|
Zyo Beta(uly )nHo

Comparing Eq. 57 with the prior Dirichlet distribution over T, we see that the ap-
proximate posterior is also Dirichlet with parameters

1
QD =1] Dirichlet(({Tmo,Tml} Kt )) (58)
m=0
=ull)+> > Qbr-1i =m)Q(b; =n) . (59)
i t>1

5.2 Attributes dynamics A

1
Q) = 7 POp)exp (Y log Plavglacip Ap)) (60)
t>1 ’
1 1 ) 1 )
= EP(qu) eXPZ D) log(1 = Ay) — m <(at,pq — Apg@t—1pq) >
t>1
(61)

1

1
= - exp [—Uab log(1 — )‘]2)q) + ﬁ(qu + Apg9pg + Azthq)]
g

Z

exp [—

—1
log(1 — /\gq)

1—>\2 < Z ,pq /\qu<at—17pq> (atpq) + Z)‘pq at 1,pq )] :

>1 t>1 t>1
(62)
The approximate posterior has the same functional form as the prior, with parameters
- T-1
Tpg = Tpg + o (63)
~ 1
fpa = fpq — ) Z <at2,pq> (64)
t>1
Ipq = Ypg T Z (@1-1,pq) (at,pq) (65)
t>1
~ 1
hpg = Ppq — 5 Z <at2—1,pq> : (66)
t>1



5.3 Basis vectors and precision of observation noise W, p;

Q(Wkpq) = %P(wkpq)exp [Z ( — %Z (log 27rpf1>
1

- %Z (p1) <(ytz - Zwujat,ijbt,i)2>ﬂ - (67)
I ij

In the following, we will write x;;; for the product a;;;b:;. Eliminating all terms
that do not contain wy,,, the exponent becomes

T _ 1
) (log2mp; ') — 5 (Pr) > (2 D (@rijpg) (Whi) Whpg

t ij7#pq
+ <x§,pq> th,pq — 2yt (Tt,pq) wkpq> (68)
T _
= —5 (log2mp; ") - [ ) (230 D (s (weis) - zzytk Tipa) ) Whpg
ij#pq t
+ (pr) Z <x§,pq> wl%pq} : (69)

t

Defining Rijpg = Y, (TtijTtpg) and Thpg == Y, Ytk (Tt ,pq), and because P(wypq) =

kapq(()ﬁ};]l), the posterior reduces to a normal distribution
w w 2
Q(Wipq) = kapq('“;fp?]’ l(fp; ) (70)
w? Rpgpg) ™" 71
Okpg — (Ypq + (Pr) Rpgpq) (71)
w 2
/‘gcp()l =0 ;(gpg Tkpg — Z Rijpq (Wrij) | - (72)

ij#pq

As for the distribution of the precision of the observations,
1 1 1 9
Qpr) = EP(Pk) exp Z ( ) Zlog 2mp,” — ) Zpl(ytl - Zwli]’xt,z’j) ))
t 1 1 ij
(73)

1
= - exp [(dk — 1) log pr — ek pr
T 1 )
+ 9 log pr, — 9Pk ( Z Yix — 2 Z (Whij) Z Yk (i)
¢ ij t
+ Z wkz} wkmn Z <5L't,7ﬁj51?tmn>)] . (74)

igmn
The term in red expands as

> M%#Sﬁzn}?m’mn + ) pp (i + Rijis)” Rigij - (75)

iymn i



When this expression is multiplied by pg, the second term does not depend on pj
and can be discarded. The posterior is thus a Gamma distribution with parameters

Qlpr) = Gammal(d,, ) (76)
T
' = dj, + 5 (77)
ek = €k + Z Ytk — 2 Z p’kz] Tkij + Z Nkzy Mk:mn zymn) : (78)
igmn

6 Learning the ARD precision parameter

After an initial learning phase, we start learning the precision hyperparameter ~,,
by maximizing the free energy,

0
“pq Vpq
dy
( O8 Vpq — Z’qu wkpq ) (80)
= ot = 2 () (81)
k
Setting the derivative to zero we obtain
1
71;11 - CTy Z <wl%pq> (82)
k
- 3 2 (k" +el) )
7 Free energy
F(QRQW),Q(p),Q(A),Q(T),Q(B, A),0) (84)
P(Y,B,A,W,p, T,A|O)
<log > (85)
(B, A)QW)Q(p)Q(AM)Q(T) / o, 40W)0()0(A)Q(T)
<logQ (B A> Q(B,A)
~(log QW) oy = (08 Q(P)) ()
~ (108 Q(T))op) — (10g Q(A)) ()
+ (log(P(B|T) > + (log(P(A|A) > QB.AQA)
+ (log P(W)) o) <1ogP( ) o)
+ (log P(T)) gy + (10g P(A)) )
+ (log P(Y|B, A, Wp)> Q(C.)QW.p) - (86)

The individual terms:



S

log Q(B, 4)) |

Z < log Q(byp, ay p)>Q(bt,p,at,p)

Z [/dath btp— 1 atp)logQ(btp =1 atp)
pit
+ /dat,p Q(bt,p - 07 at,p) lOg Q(btp = 07 aup)

Since

Q(bt,P =1, at,p) = Q(bt,p = 1) Nat p(,uft P 3 p)
Q(bt,p = 07 at,p) = Q(bt,p = 0) Nat p(“]ﬁp? 22 )

we get
<log Q(B, A)>

-2 @

Q(B,A)

(bep=1) {1og Qbrp =1) — H (Na, ,(1eps Etzp))]
+ Qb = 0) [ 108 Qb = 0) = H (N (142, T2,.)) ]]
— Z Qb = 1)[logQ(b =1)— 1lo |23 5| — di]
D t,p B g t,p B

it

1 d,
+ Q(bnp - 0) |:10g Q(bt,p = 0) - 5 log |2772%,p| - 2]]

<logQ <logQ (Wpq) >

oo

Q(Wpq)

Z
Z ( - 10g(27r0kpq)>

10



(losQA)) =" (108Q0w)) (99)

pq

-¥

Pq

— log qu — Tlpg <log(1 — /\?)q)>

+ qu <(1 - >\12)q)_1> + Ipq <)‘pq(1 - >\]27q)_1> + qu <>\12)q(1 - )‘127q)_1>]

(100)
(log P(B|T)) Z<logP (bra)) + Y (log P(beilbr—1.:,T)) (101)
t>1
=> ZQ b1)log P(b1i) + ) Z Q(be—1,i, b)) log Ty, _, b,.,)
7 t>1 bt by — 1,i
(102)
(log P(AJAN)) = Z (log P(a1;)) +Z<logP(at,ilat_17i,A)> (103)
t>1

= Z [— log 271'0 — <a17iTa17i>Q(b1,i,al,i):|

—i—gt; [—log27r—z<log
_72( <at23>

=25 (1 =A%) ) (atij ar-15)

+ <)‘Z2]( )‘2 ><at 1 zy>)] (104)

(log P(W)) oy = > (108 P(Wpq)) ) (105)

d _ 1
- Z <_2y 1Og(27r7pql) ~ 5 <quTqu>> (106)
Pq

(log P(T)) oopy = > (log P(T3)),, (107)

i

Q(T:)
=3 [ 1ogBeta(uf™) + (ufg’ ~ 1) (log T) + (ul{” — 1) {log Th1)|

i

(108)

11



(log P(A)) o) = Z<1ogp(xij)> (109)

= Z —log Zij — mi; (log(1 — )‘?j»

+ fii (L= X571 4 915 (Mg (1= X)) + by (A5(1 = A3~

(110)
—(10g Q(P)) () T (108 P(P)) 5,y = K L(Q(p)I|P(p)) (111)
:—ZKL (Pi) || P (pk)) (112)

I'(d},)
['(dg)

--3 [dg log ¢, — dj, log ex — log
w

+ (df, — i) (W(df) — log ) — di (1 5 )] |
k(113)

where U(-) is the Digamma function.

(log P(Y|B, A, W, p) >Q (114)

QW)Q(p)
1
—Z[ - log2rm + Z log pr) _§<Yt =,y -2y 2, 1ZWatzbtz

+ Z at 1bt l TE 1W (atypbt,p)ﬂ (115)
Td,
=—— log 2m + 3 zk: (log pi)

_;[Z}% 1>Yt—22YtT<2 Z W) (aibii)

i

+Ztrace(<WTE 1W@Z (arpbrp) (at7ibt7¢)>)] (116)

P
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