Table S2: Rate constants and initial conditions for the deterministic and stochastic models

Rate constant	Value	Description
$B_{\scriptscriptstyle A}^{\scriptscriptstyle R}$	0.05 molecules/min	Basal synthesis rate of R _A
$kdegR_A$	0.005 min ⁻¹	Degradation rate of R _A
kon_A	0.001 molecules ⁻¹ min ⁻¹	Association rate constant for L _A and R _A binding
koff_A	0.05 min ⁻¹	Dissociation rate constant for L _A and R _A binding
ke_A	0.01 min ⁻¹	Endocytic rate constant for C _A
B_A^{ITF}	0.05 molecules/min	Basal synthesis rate of ITF _A
$kdegTF_A$	0.005 min ⁻¹	Degradation rate of ITF _A and ATF _A
k_{IA}	60 min ⁻¹	Rate of activation of ITF _A
K_{MIA}	100 molecules	Michaelis constant for activation of ITF _A
K_{2A}	30 min ⁻¹	Rate of deactivation of ATF _A
K_{M2A}	30 molecules	Michaelis constant for deactivation of ATF _A
F_{IA}	3 molecules/min	Strength of transcription factor feedback for lineage A
F_{2A}	3 molecules/min	Strength of receptor feedback for lineage A
K_{DA}	200 molecules	Equilibrium dissociation constant for ATF _A binding to DNA
K_{IB}	400 molecules	Inhibitor dissociation constant (effect of B on A)
B_B^R	0.05 molecules/min	Basal synthesis rate of R _B
$kdegR_B$	0.005 min ⁻¹	Degradation rate of R _B
kon_B	0.001 molecules ⁻¹ min ⁻¹	Association rate constant for L _B and R _B binding
koff_B	0.05 min ⁻¹	Dissociation rate constant for L _B and R _B binding
ke_B	0.01 min ⁻¹	Endocytic rate constant for C _B
$B_{\scriptscriptstyle B}^{\scriptscriptstyle ITF}$	0.05 molecules/min	Basal synthesis rate of ITF _B
$kdegTF_{B}$	0.005 min ⁻¹	Degradation rate of ITF _B and ATF _B
k_{IB}	60 min ⁻¹	Rate of activation of ITF _B
K_{MIB}	100 molecules	Michaelis constant for activation of ITF _B
K_{2B}	30 min ⁻¹	Rate of deactivation of ATF _B
K_{M2B}	30 molecules	Michaelis constant for deactivation of ATF _B
F_{IB}	3 molecules/min	Strength of transcription factor feedback for lineage B
F_{2B}	3 molecules/min	Strength of receptor feedback for lineage B
K_{DB}	200 molecules	Equilibrium dissociation constant for ATF _B binding to DNA
K_{IA}	400 molecules	Inhibitor dissociation constant (effect of A on B)

Phosphatases P_A and P_B are held constant at 15 molecules for all simulations.

Initial conditions when starting from the uncommitted or off-state (in molecules): $[R_A]_0 = 10$; $[R_B]_0 = 10$; $[C_A]_0 = 0$; $[C_B]_0 = 0$; $[ITF_A]_0 = 10$; $[ITF_B]_0 = 10$; $[ATF_A]_0 = 0$; $[ATF_B]_0 = 0$

Initial conditions when starting from the bipotent or intermediate state (in molecules): $[R_A]_0 = 30$; $[R_B]_0 = 30$; $[C_A]_0 = 125$; $[C_B]_0 = 125$; $[ITF_A]_0 = 6$; $[ITF_B]_0 = 6$; $[ATF_A]_0 = 273$; $[ATF_B]_0 = 273$