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SUPPLEMENTAL INFORMATION 
 
Generation of the functional network 
 
In an initial approach, we included two sources of gene proximity information – gene 
neighbourhood and gene cluster. However, since Bayesian integration assumes data 
independency, we examined the degree of overlapping of pairs of datasets in an all vs. all data 
set comparison. The highest overlap (~50%) was obtained by the gene cluster against the gene 
neighbour data set (Fig. S1A). Given that both methods use a measure of genome proximity to 
predict functional linkage, this high overlap indicates a high degree of dependency (redundancy) 
between both data sets. We therefore combined both data sets into a single non-redundant data 
set termed genome proximity, and recalculated the degree of overlap between the nine remaining 
data sets (Fig. S1B). Few comparisons produced non-overlapping functional linkages at all (for 
example the Tandem affinity purification (TAP) tagging versus the Rosetta stone data set, or the 
conserved-coexpression versus the interologs set). Interestingly, the maximum degree of overlap 
with the Small Scale data set was obtained by the Gene Proximity set (~25%), followed by TAP 
tagging (~14%), and Literature mining (~13%) data sets. Assuming the small scale assays 
provide the highest quality interactions, these results suggest that genome proximity and TAP-
tagging as the best computational and experimental approaches, respectively, for the reliable 
prediction of functional interactions. 
 
An analysis of the degree of contribution of all the functional genomics data sets analysed in this 
study to the overall performance of our probabilistic functional E. coli network shows that the 
combination between the Gene Proximity and the Literature-mining methods provided the 
highest number of functional interactions (2,040) (Fig. S1C). The literature-mining data set 
provided the highest number of functional interactions (240) supported by small scale 
experiments. The conserved-coexpression and the Interologs data sets were the only two not to 
share any functional interactions. 
 
The final functional network contained a total of 3,989 interactions between 1,941 proteins 
(~45% of the E. coli proteome). Note the incorporation of predictions based on genome context 
methods reduces the potential for bias that have previously been associated with experimentally 
derived datasets [1]. The final network has an accuracy (LLS = 3.49) similar to the one obtained 
by small scale assays (LLS = 3.61) (Fig. 1B) but with a much higher coverage (46% and 11%, 
respectively) validating the utility of our approach. None of the functional linkages are contained 
in seven or more of the experimental and computational data sets. Only five linkages are 
represented by six data sets: cheY-cheA (LLS = 13.32); sucC-sucD (LLS = 12.88); pabA-pabB 
(LLS = 12.74); rpoA-rpoB (LLS = 11.43); and mobA-mobB (LLS = 11.43). 3,831 linkages (96% 
of the high confident network) are represented in at least two individual sets (Fig. S1C and D).  
 
Comparisons with other datasets 
 
Currently three other functional networks are available for E. coli – one generated by Yellaboina 
and co-workers (Yellaboina) [2]; one generated as part of the STRING database resource 
(STRING) [3,4]; and one generated by Hu and co-workers (Hu et al. GC) [5]. All three datasets 
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were generated by a similar Bayesian integration approach to that applied here. Nonetheless, the 
functional network provided here provides conceptual advances over these other datasets. 
 
(1) Compared with the Yellaboina and Hu et al. GC datasets, we include many more datasets 
(Yellaboina used three genome context datasets, Hu et al. GC used four genome context datasets, 
here we used ten, including seven theoretical and three experimental datasets). The STRING 
database on the other hand does not focus on any single organism, but provides interaction data 
from 630 organisms. Due to licensing restrictions, it isn’t clear which datasets are used for the 
generation of the E. coli interactions provided by the STRING database. However, website views 
suggest at least eight including 3 genome context methods, co-expression data (compared with 
the conserved co-expression dataset used here), experiments, databases, text mining (using an 
method developed in house) and homology searches. However it is not possible to get the details 
on which datasets are being used without going through the licensing agreements.  
 
(2) All three datasets assume independence for the different data sources. This may be 
particularly problematic for the Hu et al. GC dataset which combined two alternative sources for 
determining the natural chromosomal association of bacterial genes in operons. In our analyses 
of dataset overlap, we noted significant overlap between the gene neighbourhood and gene 
cluster (operon) datasets, which would bias the scoring. We therefore merged these two genome 
context methods into a single gene proximity set. Similarly, such data independency cannot be 
assumed for gene neighbourhood and co-expression datasets due to the fact that genes in the 
same operon are co-transcribed (hence our use of conserved co-expression datasets). 
 
(3) Here we use a gold standard set of interactions based on small scale experiments to 
benchmark our set of 58,844 interactions to derive a more limited set of ~4,000 high confidence 
interactions. The Yellaboina paper does not describe such a high confidence set and focuses on 
the analysis of the entire dataset of 78,122 interactions. The STRING interactions are scored 
based on comparisons to KEGG pathways. An arbitrary cutoff of 0.7 was used to define highly 
confident interactions. The Hu et al. GC interactions used the same scoring model as the 
STRING dataset, but rather chose a slightly higher but nonetheless arbitrary cutoff of 0.8 to 
define highly confident interactions. 
 
(4) In comparing the overlap between the four datasets (Fig. S2A), we note that our functional 
network includes 406 interactions that are not present in any of the other three datasets. In 
addition, our functional network includes 758 interactions that are present in only one other 
dataset. 
 
(5) Five fold cross-validation experiments, using COG categories as a benchmark (Fig. S2B-E) 
reveals that the functional network out performs the other three datasets in terms of recall across 
all COG categories. Furthermore, in terms of area under the receiver operating characteristic 
curve (AUC) values, our functional network out performs all three other datasets in 10 of 19 
COG categories. Finally, the functional network provides the highest values of precision for 8 
COG categories and provides the next best value of precision for an additional eight categories. 
 



 3 

(6) Unlike the STRING dataset, there are no license restrictions on our datasets which we make 
freely available online for other researchers to download and use as they see fit 
(http://www.compsysbio.org/projects/bacteriome). 
 
(7) Finally, module predictions performed on the Hu et al. GC dataset were found to be more 
functionally heterogeneous than the modules predicted for the functional network presented in 
this study (Fig. 2). This is likely associated with the higher proportion of inter-module:intra-
module interactions associated with the Hu et al. GC dataset, that impact the functional 
resolution of the modules. For example, module 3 from Hu et al. GC consists of 71 proteins. Of 
these 33 are involved in flagella biosynthesis, all of which are associated with module 3 
presented in the current study, which contains an additional 3 flagella biosynthetic proteins. In 
addition, Hu et al. GC module 3 also contains 13 proteins involved in chemotaxis response 
(represented as a separate module in the current study - module 15). Finally, there are an 
additional 25 proteins representing a variety of functions including minD (which we group into 
module 132 together with other cell division regulators - minC, minE and dicB); the ribosomal 
protein rpsB (which we group into module 8 with other translation related proteins); the cell wall 
synthesis protein mraY (which we group into module 9 with other cell wall proteins); and the 
two component system proteins - atoC and atoS (which we group into separate modules with 
related components). Hence, whereas the Hu et al. GC module analysis appears to group many 
different functions into a single heterogeneous module, the modular analysis presented here 
analysis is able to partition these different functions appropriately. 
 
There are two contributing factors that likely account for these observed differences compared to 
our own functional modules. Firstly, the larger dataset and choice of inflation parameter has led 
to the merging of a variety of modules in the Hu et al. GC dataset (proteins involved in 
chemotaxis and flagella biosynthesis are split into two modules in our dataset). Secondly, the Hu 
et al. GC dataset and our own functional dataset each contain their own sets of unique 
interactions. The functional heterogeneity associated with the Hu et al. GC modules could 
therefore either reflect:  
 
1) The lower quality of this dataset (Fig. S2). Incorrectly assigned interactions may be affecting 
module definition.  
2) Novel roles for proteins in functional modules previously considered to be unrelated. 
 
Investigation of these potential factors would benefit from the development and application of 
clustering methods, such as fuzzy clustering, that allow the partitioning of proteins into several 
modules.  
 
Estimating the size of the E. coli interactome  
 
A previous study by Hart and co-workers [6] used the hypergeometric distribution to estimate 
that the full yeast protein-protein interaction network contains from 37,800 to 75,500 
interactions. We applied the same method to two independently derived experimental networks 
to estimate the full size of the E. coli interactome. Using the formula: 
 
N = (n1(1-fpr1) x n2 (1-fpr2))/k 
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Where N is the estimated number of interactions, n1 and n2 are the number of interactions 
associated with the two datasets, fpr1and fpr2 are the false positive rates associated with the two 
datasets and k is the number of interactions common to both datasets. From the Hu et al. TAP 
dataset of 3,888 interactions, we use the 0.70 confidence score cut-off to derive a false positive 
rate of 0.30. The recent pull down dataset of 11,174 interactions used in our data integration [7], 
describes an overlap with the DIP database of ~16% from which we derive a false positive rate 
of 0.84. These two datasets were found to share 217 interactions. Feeding these numbers into the 
equation above provides a rough estimate of 22,400 total interactions. Hence we predict that our 
combined network, which features ~ half of the E. coli proteome, contains ~ one third of all E. 
coli interactions. 
 
Network analyses in the context of COG functional categories 
 
Focusing on the more comprehensive combined network we examined the differences between 
the types of interactions found between different COG functional categories. We therefore 
calculated a variety of graph metrics: node degree, betweenness, shortest path length, node 
clustering coefficient and mutual clustering coefficient – see Suppl. methods (Fig. S4). From the 
distributions of the graphs, distinct properties associated with individual or groups of COG 
categories could be discerned. While aspects of this analysis are outlined in the main paper, it is 
worth highlighting some additional features. Both types of clustering coefficients (node and 
mutual) provide a measure of the tendency of proteins to form discrete clusters within the 
network, however the mutual clustering coefficient additionally provides the ability to discern 
between forming clusters with proteins of the same or different categories. While proteins with 
the COG assignment N (Cell motility) had the highest clustering coefficients (Fig. S4C and D), it 
is interesting to note the tendency of such proteins to co-cluster with each other rather than 
proteins from other categories (this may be discerned by the increase in mutual cluster 
coefficients for proteins within the same category compared with proteins from different 
categories). Similar tendencies were observed for COG categories H (Coenzyme transport and 
metabolism) and P (Inorganic ion transport and metabolism), suggesting that proteins from these 
three COG categories tend to form discrete functional clusters among themselves. Betweenness 
and shortest path length provide measures of how central a protein is in a network, proteins 
possessing higher betweenness and lowest shortest path length tending to be located at the centre 
of a network. As noted in the main text, proteins in COG categories J (Translation, ribosomal 
structure and biogenesis) and L (Replication, recombination and repair) tend to be more centrally 
located in the network (Fig. S4A and B). However additionally a substantial fraction of proteins 
in COG category H (coenzyme transport and metabolism) are also centrally placed in the 
network, perhaps reflecting the varied biological processes in which coenzymes partake. On the 
other hand, proteins assigned to categories F (nucleotide transport and metabolism), P (inorganic 
ion transport and metabolism), Q (secondary metabolites biosynthesis, transport and catabolism), 
R (general function prediction only) and S (function unknown) are not well connected (low node 
degree) and are peripheral to the network (low betweenness values). The first three categories 
represent proteins involved in transport/metabolism related processes and may include non-
essential proteins that either provide marginal but evolutionary important contributions to fitness 
or facilitate adaptation of the bacteria to changing environments [8]. The latter two categories 
suggest the lack of annotation associated with these genes may stem from their peripheral roles 
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within biological processes. 
 
Exploring these features in more depth across all three networks (functional, Hu et al. TAP and 
combined), we examined the distribution of interactions and shortest path length between 
proteins for each pair of COG categories (Fig. 1E and Fig. S5). Many differences are observed 
between the Hu et al. TAP and functional network. For example in the Hu et al. TAP network, 
there was a significant enrichment in interactions between proteins in COG category J with a 
large number of other COG categories (I, K, L, M, O, Q, R, S, U, V and multi), such 
overrepresented interactions were restricted only to categories K and U in the functional 
network. Since similar numbers of proteins in category J were included in both networks, these 
findings highlight the tendency of the TAP approach to pull down additional proteins that may 
not directly interact with the bait protein and suggests that proteins in COG category J (which 
include ribosomal proteins) form large complexes that promiscuously interact with proteins from 
many different functional categories. In terms of clusters of categories, the functional network 
shows a significant enrichment in interactions between proteins derived from COG categories D 
(Cell cycle control, cell division, chromosome partitioning), M (Cell wall/membrane/envelope 
biogenesis) and U (Intracellular trafficking, secretion and vesicular transport) while the Hu et al. 
TAP network shows a significant enrichment in interactions between proteins derived from COG 
categories D, U and O (posttranslational modification, protein turnover, chaperones).  
The biological significance of the combined interactions between COG categories D, M O and U 
has already been commented in the main text, however the failure of the Hu et al. TAP network 
to find enrichment for COG category M within this group likely stems from the smaller number 
of proteins from this category identified in the TAP assays. On the other hand, the failure of the 
functional network to identify enrichment for COG category O within this group may again be 
due to the TAP approach to identify many promiscuous interactions through large complex 
interactions.  
 
Prediction of functional annotations for unknown genes 
 
A major goal for many functional genomics and proteomics projects is the generation of accurate 
functional information for every gene and its product. Although tremendous progress has been 
made through the application of such systematic studies, we note that within the E. coli proteome 
637 (15%) proteins have not been assigned a functional category according to the latest release 
of COG, while 316 (7.6%) have been assigned category S (‘function unknown) and a further 340 
proteins have only been assigned into category ‘R’ (‘general function prediction only’). Recently 
there has been much progress in the development of novel methods of functional inference based 

on network connectivity [9,10]. The availability of a large scale reliable network of functional 
interactions for E. coli thus provides a valuable resource for future studies aimed at predicting 
the functions of these unknowns. As an initial test of the ability of the Bayesian-derived 
functional network to accurately infer functional annotations we investigated two basic network-
based approaches: one based on direct neighbour interactions and one based on membership 
within predicted functional modules. To provide estimates of the accuracy of these two 
approaches (and indirectly the ability of our functional network to infer reliable annotations), we 
applied a cross validation procedure to re-predict functional annotations of proteins within the 
functional network (see Suppl. methods). Applying the neighbour linkage approach, we were 
able to identify correct annotations for 66% and 75% of the proteins depending on COG category 
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assignment stringency (Fig. S6C). On the other hand, applying the functional module approach 
led to correct annotation identification for 74% and 100% of the proteins using equivalent levels 
of stringency. These results demonstrate the improved performance of the functional module 
over the neighbour linkage method in terms of accuracy. However, in terms of coverage, the 
functional module approach only provides correct annotations for 889 (34% of the COG 
annotated E. coli proteome - 2,587 proteins with meaningful COGs) and 1,093 proteins (42%), 
using the high and low stringency approaches respectively. This compares with 1,013 (39%) and 
1,180 proteins (46%) obtained by applying the neighbour linkage approach. Applying the 
neighbour linkage approach to random networks highlights the importance of using high 
confident PPI networks to make accurate functional predictions using neighbour linkage and/or 
functional module approaches (Fig. S6C). In summary, the functional module approach 
performed better in terms of accuracy but had a lower coverage compared to the neighbour 
linkage approach. Interestingly, both approaches appear to be complementary since merging the 
results of both approaches (functional module and neighbour linkage) provides correct 
annotations for 1,152 (45% of the COG annotated E. coli proteome) and 1,376 proteins (53%) 
using the more and less stringent approaches respectively. 
 
Identification of Modules of Essential Proteins 
 
In addition to proteins from the same gene family being closer in the network (Fig. S9A), we 
also found that essential proteins tend to be in closer proximity than non-essential proteins (mean 
shortest path length of essential proteins to other essential proteins was five compared with seven 
for non-essential proteins to other non-essential proteins). This suggests that groups of essential 
proteins might form distinct functional modules [11]. From our set of 316 predicted functional 
modules, 42 were identified as being significantly enriched in essential proteins and are likely 
mediate core biological processes (Table S6). For example, fourteen modules represent the 
largest detected functional modules including the 30S and 50S ribosomal subunits and RNA and 
DNA polymerases. 
 
Conservation of the functional network within the proteobacteria 
 
Comparisons of proteins in the functional network to other proteobacterial genomes found that 
3,546 (of 3,989 - 89%) E. coli interactions are potentially retained across any of 37 
gammaproteobacterial genomes analysed in this study, 586 (14.7%) are retained across all 
gammaproteobacterial genomes, 200 (5%) are found in at least one other gammaproteobacteria 
but not in other taxa, and interestingly only five interactions represented by nine proteins (trpE 
trpL; pheS pheM; rfaK rfaZ, rfaB rfaS; rfaS rfaP) are exclusive to E. coli.  Three other species of 
E. coli were included in the analysis (see Suppl. methods) and are therefore expected to share a 
large number of interactions with our functional network. Interestingly, we noted a deficit of 215 
(5.4%), 240 (6%), and 347 (8.7%) potential interactions from the E. coli strains RIM, EDL, and 
CFT, respectively, compared to E. coli K-12. These results highlight the differences even 
between strains from the same species.  
 
METHODS 
 
Data sets for Bayesian integration 
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Experimental protein-protein interaction (PPI) data 
Experimental PPIs from various large- and small-scale experiments in E. coli were collected 
from the Database of Interacting Proteins (DIP - downloaded November 2006) [12]. PPIs from 
DIP were divided into two main categories small-scale experiments and large-scale TAP assays. 
A third large-scale PPI data set was obtained from a recent large scale pull down study based on 
the use of His-tags [7]. 
 
Computational predictions  
Conserved coexpression data 
Conserved coexpression data have previously been used to infer functional linkages, we 
therefore extracted the relevant data for pairs of E. coli genes from a study examining 
coexpression patterns across five other organisms: S, cerevisiae, Caenorhabditis elegans, 
Arabadopsis thaliana, Drosophila menaogaster and human [13]. 
 
Genome context data 
Genome context data were obtained from the Prolinks database [14] which contains information 
on genome context methods used to predict functional linkages between proteins. These genome 
context methods include: the phylogenetic profile method - which uses the presence and absence 
of proteins across multiple genomes; the gene cluster method - which uses genome proximity; 
Rosetta stone - which uses a gene fusion event in a second organism; and the gene neighbour 
method - which uses both gene proximity and phylogenetic distribution. We used all medium-to-
high confidence functional linkages provided by Prolinks from the E. coli data set. All the 
genome context methods obtained from this combined set were initially considered as 
independent data sets. However, due to the relatedness of gene neighbour and gene cluster 
methods, these two data sets were ultimately combined into a single non-redundant – gene 
proximity – data set for derivation of the final functional network. The confidence scores 
associated to each functional linkage provided by Prolinks were not taking into account in this 
study.  
 
Interologs data 
The Interologs approach [15] was performed by applying BLAST [16] to the E. coli proteome as 
query versus the Helicobacter pylori proteome as database. Then we calculated E. coli orthologs 
(defined by BLAST best reciprocal hits with a cut-off e-value <= 10-10) and mapped the H. pylori 
interactome [17] to derive E. coli interologs.  
 
Literature-mining data 
Literature-mined PPIs (co-citations) from E. coli were obtained by automatically querying the 
Information Hyperlinked Over Proteins database (iHOP) [18]. 
 
Benchmark set 
Four different benchmark sets were used in these analyses: EcoCyC [19], the Clusters of 
Orthologous Group (COG) [20], the Kyoto-based KEGG [21], and the Gene Ontology (GO) 
annotation database [22]. EcoCyC organizes genes into four main functional categories: 
metabolic pathways, protein complexes, pairs of genes, A and B, where the product of gene A is 
a component of a transcription factor that regulates gene B, and pairs of genes, A and B, where 
the product of gene A is a component of a transporter of a substrate that the product of gene B 
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catabolizes. COG assigns genes to functions within 22 broad categories, KEGG uses 230 
different functional categories at the third level of hierarchy. EcoCyc provides a total of 565 
distinct terms among four main categories, and therefore provides a relatively small background 
probability of matching biological processes at random compared with COG and KEGG 
datasets. GO “biological process” annotation contains up to 16 different levels of hierarchy. In 
the case of GO “biological process” annotations, initial tests revealed the best performance at the 
ninth level of the hierarchy (data not shown). This provides a total of 1,958 distinct GO terms. 
For each benchmark database, functional linkages were considered to be correct if both proteins 
share the same functional categories. 
 
Detection of functional modules 
We identified highly connected functional modules operating within our final confident network 
by using the Markov cluster (MCL) algorithm [23]. MCL simulates random walks within graphs 
using the language of Markov (stochastic) matrices to partition a graph into highly connected 
modules. This procedure works efficiently on large dense graphs [24]. Furthermore, MCL 
algorithm was found to be remarkably robust to graph alterations and it has the best performance 
over other clustering algorithms on both simulated and real data sets [25]. MCL was applied to 
our networks by testing several inflation operators, and settling on values that provided the best 
overlap (semantic similarity) [26] of the computed clusters with the functional categories of the 
highly curated database EcoCyc [19]. All three networks (functional, Hu et al. TAP and 
combined) produced similar distributions of module sizes that were markedly different from 
those produced by random networks, again highlighting the non-random organization of proteins 
into modules (Fig. S6B). 
 
Generation of random networks 
To act as controls, three types of randomly generated networks were created. Random networks 
were created by randomly selecting equivalent numbers of proteins (compared with the 
comparator network) from the E. coli proteome and randomly connecting them with equivalent 
numbers of interactions. Shuffled networks were generated by using the same set of proteins as 
the comparator network and randomly assigning equivalent numbers of interactions. Random 
networks:same topology were generated using the same set of proteins as the comparator 
network by randomly reassigning their interaction partners, while at the same time maintaining 
their number of interactions within the network (i.e. the degree distribution of the network 
remains the same) [27].  
 
Functional prediction 
Functional predictions were performed using two methods: 1) a neighbour linkage approach 
[28]; and 2) an enrichment of COG terms for predicted functional modules. Neighbour linkage 
prediction was based on the COG functional annotation of the direct neighbours of the target 
protein. Functional module prediction for a protein employed the predicted functional modules 
and derived COG annotations for the target proteins based on the highest percentage of common 
COG terms among the different members of the functional module. For both methods, correct 
COG assignment additionally required at least 20% of the interaction partners/module members 
to have the same COG category. Finally two measures of stringency were employed: high 
stringency predictions required the majority of interaction partners/module members to be 
assigned to the same COG category; low stringency predictions only required any of the 
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interaction partners/module members to possess the same COG category (albeit with the 
additional proviso that at least 20% of the interactions/module partners were so annotated). To 
measure the accuracy of functional predictions, we used the leave-one-out cross validation 
(LOOCV) procedure, i.e. only proteins which itself and one of its neighbours possessed an 
annotation were used in cross validation. The LOOCV method randomly selects a protein and 
compares its known function with that predicted by the neighbourhood linkage or functional 
module methods. 
 
Network analyses 
Unless otherwise noted network analyses were performed using Perl scripts developed in house. 
Values of Betweenness and network diameter were obtained using Pajek [29]. Node cluster 
coefficients were obtained using tYNA [30]. 
 
Node degree 
The degree (k) of a node (protein) in a PPI network is defined by the number of interactions of 
the node with other nodes in the network. 
 
Mutual clustering coefficient 
The cumulative hypergeometric distribution is frequently used to measure cluster enrichment and 
significance of co-occurrence. The summation in the hypergeometric coefficient can be 
interpreted as a p-value, the probability of obtaining a number of mutual neighbours between two 
nodes at or above the observed number by chance, under the null hypothesis that the 
neighbourhoods are independent, and given both the neighbourhood sizes of the two nodes and 
total number of nodes [31]. For two proteins Pi and Pj, let di and dj denote the number of 
interactors of Pi and Pj, respectively, dij stands for the number of common interactors of Pi and Pj. 
Therefore, the hypergeometric mutual clustering coefficient of Pi and Pj (Hypergeoij) is defined 
as: 
 

 
 
 
where N stands for the total number of proteins. 
 
Shortest path length 
The shortest path length between two nodes in the network is the number of edges in a shortest 
path connecting them. The shortest path length is infinity if there are no paths between two 
nodes. We use the Dijkstra's algorithm [32] to calculate the shortest path length between every 
two nodes in the network. 
 
Eccentricity 
The eccentricity of a node Pi is the greatest distance between the node Pi and any other nodes 
[32]. 
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