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A Methods

A.1 Introduction

The proposed sampling approach is complementary to traditional approaches such as model calibration
and has the following conceptual underpinning. The structure and parameters of most reported models are
underdetermined with respect to the available experimental observations [1]. Moreover, some biochemical
models are structurally unidentifiable [2]. That is, even in the presence of arbitrarily abundant and error
free data, model parameters that yield the observed behavior cannot be uniquely identified. However,
model calibration is designed to find the unique parameter vector that renders the model behavior the
closest to the experimentally observed behavior. Consequently, often the single point-estimate for a model
parameter, returned by a calibration procedure, may contain little information about the underlying
biophysical process. The sampling approach alleviates this implicit degeneracy by making it explicit and
instead returns all parameter vectors that are consistent with the observed behavior.

Model behavior may be characterized by a collection of systemic properties π(k) assuming values
within a predetermined range, i.e., π(k) ∈ [π,π], a hyper-rectangle. We then say the properties π are
preserved under parameter vector k. In our application for instance, these properties are oscillation
amplitude and frequency of phosphorylated KaiC, that are required to stay within a 10% interval around
their nominal values [3, 4]. Any such constraint on a systemic property partitions the parameter space
into regions that are viable and those that are not. Augmenting the collection π with a new property
and its constraint generally causes the viable region to shrink.

Properties can take various forms. In calibrating a model to experimental time course data for in-
stance, one may want to determine parameter regions exhibiting trajectories that stay within a predefined
interval around the experimental time course reflecting the uncertainty of data acquisition. Constraints
like those just mentioned are interval constraints rather than optimality criteria as found in optimiza-
tion techniques such as model calibration (see Figure S4 for an illustration of this approach). This
semi-quantitative approach is particularly suitable to deal with the ubiquitous uncertainty of biological
information, and it can leverage principles from interval analysis [5], semi-quantitative reasoning [6] and
robust control theory [7]. Besides its application to robustness analysis the approach may be used to more
rigorously account for issues related to identifiability and measurement uncertainty in model calibration.
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A.2 Details about global robustness analysis

In our application of the iteration procedure, random variates in the first iteration are uncorrelated, and
have a standard deviation of 0.25 in the logarithmic domain, which ensures that this initial sampling
covers at least one order of magnitude for each parameter. In subsequent iterations, we found it useful
to decrease the variance scaling parameter λ from equation 1 (main text) linearly from λ(1) = 2.5 to
λ(5) = 1.5, and to keep λ(j) constant thereafter. The iterations can be carried out until convergence (e.g.
until the PCA axes in subsequent deviate from each other by less than a pre-specified angle), or for a
fixed number of steps, in order to amass a sufficient number of viable parameter vectors in V.

Different models may have different dimensions p. For example, the two circadian oscillator models we
study differ in this respect. (The autocatalytic model has 8 state variables and 7 parameters, and the two-
sites model has 4 state variables and 12 parameters.) To allow model comparison, we need to normalize
our measure of global robustness to account for these differences. If along each (principal component) axis
of parameter space the same fraction c of randomly chosen parameters were to preserve the properties
π, then the ratio C = |V|/|S| = cp, and c = p

√
C. Although c is almost certain to vary among different

axes, p
√
C can still be thought of as a per-parameter robustness of a model. This observation motivates

the normalized robustness measure R = p
√
V = p

√
(|V|/|S|)Vol(B). In the log-domain, a value of R = 0.5

(V = 0.5p) means that on average we can change every parameter over half an order of magnitude (by
around 32%) while preserving π ∈ [π,π].

A.3 Local robustness quantifiers

A.3.1 Robustness ρP and ρC

To estimate ρP (k) for any specific model, one generates many random perturbations of each viable
parameter vector k, for example with a Gaussian distribution centered on k, determine the model’s
behavior with these parameters, and define ρP as the fraction of perturbations preserving π ∈ [π,π].
The standard deviation of the Gaussian distribution is best chosen such that (i) all values of ρP in the
allowed interval [0, 1] are observed, and that (ii) ρP can be distinguished most significantly for the two
considered models.

For our application to the autocatalytic and two-sites model, we perturbed each viable parameter
vector k 1000 times. In each of these perturbations, we multiplied each component ki of k with a
Gaussian random variate of mean one and standard deviation σ = 0.2. We chose this value, because it
yields different values of ρP for different parameter vectors, thus allowing us to assess how robustness
varies in different regions of parameter space, and because it permits discrimination of ρP among the two
models (Figure S8). We took the same approach for the robustness to total concentration perturbations
ρC .

A.3.2 Robustness to molecular noise, ρN

When stochasticity is involved, the definition of a period becomes problematic, because considerable
amplitude variations from one period to the next may be present. The Hilbert transform method, which
yields information about the phase of a trajectory [8,9] helps us circumvent this problem. It is preferable
to the Fourier transform in situations where period needs to be estimated independently from amplitude.
To quantify ρN (k) we first simulate [10] stochastic trajectories over a large number of periods using k
with a specific cell volume v (see below). We define ρN as the ratio of the number of completed cycles
with the correct period to the total number of completed cycles in a deterministic simulation of the same
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duration.

To quantify robustness to molecular noise, we perform stochastic simulations [10] over some time
span τ with a number of molecules determined by a cellular volume v = 3µl and published molecular
concentrations [3, 4]. For the autocatalytic model (SI A.4), the total numbers of molecules become 5420
for KaiA, 1807 for KaiB, and 6323 for KaiC. For the two-sites model (SI A.5), we obtain analogously 2349
molecules of KaiA and 6142 molecules of KaiC. These values are within ranges observed for cyanobacteria
[11]. When changing the cellular volume, the results stay qualitatively the same (results not shown).

To define our robustness measure ρN , we denote the desired or empirically observed period of an
oscillatory system as T0. This period is allowed to vary over a certain range (10% for our application).
Also, we denote as T (k) the set of observed period durations in the stochastic simulation of duration
τ , for a circuit with parameter vector k. With this notation, we define ρN = t(k)/z(k), where t(k) is
the total number of cycles with a period in the allowable range that occurred in the time τ , and z is a
normalization constant defined as

z(k) = max
{
τ

T0
, |T (k)|

}
.

The constant z(k) is chosen such that ρN is smaller than one and that we avoid misclassification of
trajectories having long duration without oscillation, and bursts of oscillations with the correct period.
In the following, we will motivate our choice of this normalization by simple examples. Consider a
hypothetical oscillator with a desired period of T0 = 22h, 10% allowable variation around this period,
and a simulation length τ = 330h. In a deterministic (noiseless) simulation, the oscillator would complete
exactly τ

T0
= 15 cycles, but noise could change this number. Typically, it would cause the periods of the

cycles to spread over a range larger than allowable, but the majority of cycles might have the correct
period. If, for example, we observe 14 cycles, six of them with a period of 22.5h, six with a period of 23.5h
and two with a period of 26h (outside the allowable range), then ρN would calculate as ρN = 12

15 = 0.8.
The second example concerns the special case where noise speeds up the oscillation. If we observe 16
cycles of period 20.5h, then the maximum in the normalization function above is important to have ρN
contained between 0 and 1, because ρN = 16

max(15,16) = 1. Lastly, we consider the case where molecular
noise generates pauses in the cycle. We can imagine a trajectory starting with two cycles having an
acceptable duration of 22h, then a long cycle (pause) of 240h and again 2 cycles with acceptable period.
In this case ρN calculates as 4

15 = 0.267 with our normalization. The much simpler normalization that
divides by the number of completed cycles would yield an artificially inflated value of ρN = 4

5 = 0.8.

In our simulations, we estimate ρN as averages over 80 independent simulations over τ = 100 · T0

hours where T0 is the duration of the period of each model with its nominal published values [3, 4], i.e.,
approximately 2200 hours for each model.

A.3.3 Attraction of the cycle, ρA

In biological systems, most regular oscillations are limit cycle oscillations [12], where a system returns
to its pre-perturbation nominal oscillatory behavior after a perturbation of its trajectory. Some such
oscillations may be much more robust, in the sense that they would converge very rapidly to this nominal
behavior, whereas others may take a long time to ‘absorb’ the effects of a transient perturbation.

A commonly used analytical approach of estimating this convergence to oscillatory behavior uses
Floquet theory [13]. Briefly, a system’s convergence to a cycle can be estimated through its largest
Floquet multiplier, which can be thought of the fraction of an small trajectory perturbation that remains
after one cycle. For the systems we study, Floquet multipliers assume values between zero and one,
and the smaller the multiplier, the faster a perturbation is absorbed. To calculate the largest Floquet
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multiplier in our application, we integrate over one cycle the variational equations [13] of the models
that we study, and find its largest eigenvalue µ. We define ρA(k) = 1 − µ. This measure of robustness
corresponds to the fraction of the perturbation that is ‘absorbed’ by the system after one cycle. This
quantifier is complementary to ρN for the following reasons. First, ρA is a deterministic measure and
thus remains useful for very large molecule copy numbers. Second, it characterizes a system’s response
to arbitrary transient state perturbations, not just to fluctuations due to molecular noise.

A.3.4 Sensitivity of the period, ρS

A measure for the sensitivity of oscillatory behavior assesses the effect of an infinitesimal change of an
individual parameter or parameter vector on the period T of a system. Specifically, we estimate the
gradient-vector ∂T/∂k. A component i of this vector with large absolute value indicates a parameter ki
that affects T to a great extent. We define

ρS(k) :=
(

1 +
∥∥∥∥ ∂ log(T )
∂ log(|k|)

∥∥∥∥)−1

as our robustness measure.

The logarithm in this expression occurs, because we are interested in the relative effect of one pa-
rameter on the period. The expression ‖x‖ denotes the Euclidian norm

√∑
i x

2
i of the vector x. The

quantifier ρS assumes values between zero and one.

In order to estimate ρS , we need to derive the first order approximation of the quantity ∂T
∂ki

, i.e.,
the response of a dynamical systems period T to an infinitesimal change in one component ki of its
parameter vector k. For simplicity of notation, we first derive the expression for a single parameter k
and then extend it to a parameter vector k.

For an ordinary differential system dx
dt = F(x(t), k) with a parameter k that has a periodic solution

ξ(t, k) = ξ(t + T (k), k) of period T (k), we define the nominal parameter k0, the corresponding nominal
solution ξ0(t) = ξ(t, k0) and the nominal period T0 = T (k0). The infinitesimal increment of the parameter
is dk. With this notation, we can write dT = T (k0 + dk) − T0 and dξ(t) = ξ(t, k0 + dk) − ξ0(t). We
have a family of solutions φ(t,x0, k) = x(t, k), with x(0) = x0. Then the sensitivity matrix M(t) can be
defined as (M(t))ij = ∂φi

∂xj
(t,x0, k) and the parameter sensitivity matrix is (V(t))i = ∂φi

∂k (t,x0, k).

M(t) is the solution of the variational equation

dM
dt

=
dF
dx

(ξ0(t), k0)M(t) , M(0) = I

and V(t) the solution of the variational equation

dV
dt

=
dF
dx

(ξ0(t), k0)V(t) +
∂F
∂k

(ξ0(t), k0), V(0) = 0

Then up to the first order approximation

dξ(t) ∼= M(t)dξ(0) + V(t)dk

For simplicity, choose H the Poincaré section as the hyperplane that goes through ξ0(0) and is
perpendicular to e = dξ0

dt (0)
/∥∥∥dξ0

dt (0)
∥∥∥. Then P = I−e eT is the orthogonal projection on the hyperplane

H.
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Note that by definition ξ0(0) = ξ0(T0) ∈ H. We suppose also, without restriction or loss of generality
that ξ(0, k) ∈ H which implies that Pdξ(0, k) = dξ(0, k). However, in general:

Pdξ(T0, k0 + dk) 6= dξ(T0, k0 + dk)

but we have
ξ(T (k0 + dk), k0 + dk) = ξ(0, k0 + dk) ∈ H

This can be expressed as eT (ξ(T0 + dT, k0 + dk)− ξ0(0)) = 0 and with the first order approximation

ξ(T0 + dT, k0 + dk)− ξ0(0) ≈ ∂ξ

∂t
(T0, k0)dT +

∂ξ

∂k
(T0, k0)dk

=
∂ξ

∂t
(0, k0)dT + M(T0)

∂ξ

∂k
(0, k0)dk + V(T0)dk

we have

0 ≈ eT
(

e
∥∥∥∥∂ξ

∂t
(0, k0)

∥∥∥∥ dT + M(T0)
∂ξ

∂k
(0, k0)dk + V(T0)dk

)

dT ≈ −
eT
(
M(T0) ∂ξ

∂k (0, k0)dk + V(T0)dk
)

∥∥∥∂ξ
∂t (0, k0)

∥∥∥
therefore

∂ξ

∂t
(T0, k0)dT ≈ −eeT

(
M(T0)

∂ξ

∂k
(0, k0)dk + V(T0)dk

)
ξ(T0 + dT, k0 + dk)− ξ0(0) ≈ (I− eeT )

(
M(T0)

∂ξ

∂k
(0, k0)dk + V(T0)dk

)
= P

(
M(T0)

∂ξ

∂k
(0, k0)dk + V(T0)dk

)
And because of

ξ(T0 + dT, k0 + dk)− ξ0(0) = ξ(0, k0 + dk)− ξ0(0)

≈ ∂ξ

∂k
(0, k0)dk = P

∂ξ

∂k
(0, k0)dk

We get

P
(

M(T0)
∂ξ

∂k
(0, k0)dk + V(T0)dk

)
≈ P

∂ξ

∂k
(0, k0)dk

∂ξ

∂k
(0, k0)dk = [I−PM(T0)]−1

H PV(T0)dk

Where [A]−1
H is the inverse of the matrix A restricted to the hyperplane H.

If we use the last equation in the derivation of dT . we find

∂T

∂k
≈ −

eT
(
M(T0)[I−PM(T0)]−1

H PV(T0) + V(T0)
)∥∥∥∂ξ

∂t (0, k0)
∥∥∥
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Which can also be expressed with k being a vector with dx
dt = F(x(t),k) and V being a matrix as

∂T

∂k
≈ −

eT
(
M(T0)[I−PM(T0)]−1

H PV(T0) + V(T0)
)∥∥∥∂ξ

∂t (0,k0)
∥∥∥

With the last equation, we can calculate our robustness quantifier ρS . We numerically integrate the
variational equations for M(t) and V(t) over one period using MATLAB, which allows us to estimate
∂T
∂k . To increase the precision of this estimate, we start the integration at different points of the cycle
and average the results. Finally, we use the following relation to calculate ρS(k):

∂T

∂k
k
T

=
∂T
T
∂k
k

=
∂ log(T )
∂ log(k)
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A.4 Autocatalytic model

The autocatalytic model, as described in [3] contains 8 states variables and 7 reactions with 7 individual
parameters (Figure 2A). In the equation system below square brackets denote concentrations, and names
inscribed in these brackets denote (phospho)proteins or complexes thereof.

d[KaiA]
dt

= k5[KaiABC∗]− k1[KaiA][KaiC]− k3[KaiAC∗][KaiA][KaiC]

d[KaiB]
dt

= k6[KaiBC∗]− k4[KaiAC∗][KaiB]

d[KaiC]
dt

= k7[KaiC∗]− k1[KaiA][KaiC]− k3[KaiAC∗][KaiA][KaiC]

d[KaiC∗]
dt

= k6[KaiBC∗]− k7[KaiC∗]

d[KaiAC]
dt

= k1[KaiA][KaiC]− k2[KaiAC]

d[KaiAC∗]
dt

= k2[KaiAC] + k3[KaiAC∗][KaiA][KaiC]− k4[KaiAC∗][KaiB]

d[KaiBC∗]
dt

= k5[KaiABC∗]− k6[KaiBC∗]

d[KaiABC∗]
dt

= k4[KaiAC∗][KaiB]− k5[KaiABC∗]

To initialize our iterative exploration of parameter space, we use the following parameter vector
reported in [3].

k = [10−4 mol−1h−1, 0.40 h−1, 0.45 M−2h−1, 3.65 h−1, 4.00 h−1, 0.90 h−1, 0.18 h−1]

The total concentrations of the relevant molecules are [ΣKaiA] = 3.0 µM , [ΣKaiB] = 1.0 µM and
[ΣKaiC] = 3.5 µM .
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A.5 Two phosphorylation sites model

The two-sites model contains 4 states variables and 8 reactions with 12 parameters [4] (Figure 2B). [KaiA]
is expressed as a function of [KaiCS ]:

[KaiA]
(
[KaiCS ]

)
= [KaiA] = max

{
0, [ΣKaiA]− 2[KaiCS ]

}
[KaiC] = [ΣKaiC]− [KaiCT ]− [KaiCST ]− [KaiCS ]

d[KaiCT ]
dt

=
k4[KaiA]

k12 + [KaiA]
[KaiC] +

k9[KaiA]
k12 + [KaiA]

[KaiCST ]

−
(

k1 +
k8[KaiA]

k12 + [KaiA]

)
[KaiCT ]− k5[KaiA]

k12 + [KaiA]
[KaiCT ]

d[KaiCST ]
dt

=
k5[KaiA]

k12 + [KaiA]
[KaiCT ] +

k6[KaiA]
k12 + [KaiA]

[KaiCS ]

−
(

k2 +
k10[KaiA]

k12 + [KaiA]

)
[KaiCST ]− k9[KaiA]

k12 + [KaiA]
[KaiCST ]

d[KaiCT ]
dt

=
(

k2 +
k10[KaiA]

k12 + [KaiA]

)
[KaiCST ] +

k7[KaiA]
k12 + [KaiA]

[KaiC]

−
(

k3 +
k11[KaiA]

k12 + [KaiA]

)
[KaiCS ]− k6[KaiA]

k12 + [KaiA]
[KaiCS ]

To initialize our iterative exploration of parameter space, we use the following parameter vector
reported in [4].

k = [0.21 h−1, 0.31 h−1, 0.11 h−1, 0.4791 h−1, 0.2129 h−1, 0.5057 h−1,

0.0532 h−1, 0.7985 h−1, 0.173 h−1,−0.3194 h−1,−0.1331 h−1, 0.43 M ]

The total concentrations are [ΣKaiA] = 1.3µM and [ΣKaiC] = 3.4µM .
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A.6 Computational requirements

The behavior we chose is challenging to analyze, because it involves cyclic and not fixed point (steady-
state) behavior. We thus need to integrate models over multiple periods to measure properties with any
precision. To give but one example, to estimate period and amplitude with less than 0.1% of error for the
two-sites model in the Monte Carlo integration requires on average 0.17 seconds for any one parameter
vector on an Intel Xeon X5355 processor (2.66 GHz) using only one core. These numbers translate into
40 hours for the 9× 105 vectors we sampled for the two-sites model.

For robustness quantification, finite parameter perturbations are the most costly, as they require 103

model integrations per parameter vector, resulting in 4-6 minutes of simulation time on one Xeon core.
To estimate ρP for the 604 parameter vectors for the two-sites model requires approximately 30 hours.
The next most costly procedure is estimation of robustness to molecular noise. For instance, to estimate
ρN with less than one percent error requires more than one minute on seven cores of a dual quad-core
Xeon X5355 processor, or 20 hours for all 604 sampled viable parameter vectors. Overall, estimation of
all global and local robustness quantifiers for any one model require less than 5 days on a dual quad-core
Xeon X5355 processor.
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B Supplementary results for the cyanobacterial models

B.1 The region of viable parameters may be connected in parameter space.

We asked whether the region of viable parameters is connected in parameter space. For any high di-
mensional model whose governing equations that cannot be solved analytically, this is perhaps the most
difficult problem in global analysis, for the following reason. The sample of viable parameters that our
approach generates, albeit large, is finite, and comes from a multidimensional parameter space with un-
countably many elements. In this parameter space, the set of all viable parameters may be connected, or,
alternatively, it may be fragmented into many small islands of viable subsets. No sampling approach can
prove which of these extremes (or a spectrum of possibilities in between) is the case. However, sampling
can provide a hint as to which of these scenarios is closer to the truth. To this end we define a graph
whose nodes are parameter vectors in the viable set, and where an edge connects two nodes if a straight
line exists that preserves the oscillatory behavior for all points along the line. To determine whether
two parameter vectors, say k and k, are neighbors in this graph, we sampled a convex combination
ki = (1 − i

M )k + i
M k, using a finite sample M of points between k and k. We assessed whether all of

these M points preserved proper oscillatory behavior, which suggests that the straight line connecting
k and k lies in its entirety in the viable set. Figure S1 shows a projection of the structure of the entire
graph into the two-dimensional space defined by parameters k5 and k6 for the autocatalytic model, and
into the two-dimensional space defined by parameters k1 and k2 for the two-sites model.

For both models, the graph thus estimated consists of one connected component comprising the
vast majority of parameter vectors, and few isolated nodes. Specifically, in the autocatalytic model,
only 0.7% (12 of 1828) parameter vectors are not in this connected component. In the two-sites model
1.3% (8 out of 604) parameter vectors are not in this component. The isolated parameter vectors lie
close to the boundary of the viable parameter volume. For these analyses, we used M = 10 · ‖k − k‖
resulting in a sample of 10 points per order of magnitude change along each straight line connecting any
two parameter vectors, corresponding to a 25% difference in parameter values between two successive
sampling points. Increasing the density of the sampling did not affect these results qualitatively (not
shown). The parameter pairs in Figure S1 were chosen for the projection, because they best illustrate
that the set of viable parameter vectors is not convex.

B.2 Robustness to temperature changes.

We now address in more details the question of temperature compensation for the studied models. Ideally,
to estimate an oscillator’s ability to compensate for temperature changes the Arrhenius equation, which
predicts the effect of temperature on chemical reaction rates [3,14], would be used. However, this approach
requires knowledge of the activation energy for each reaction in a circuit, which is usually not available.
Still, the sensitivity of the period to such parameter changes [3, 14, 15] can be studied. Specifically, the
values αi = ∂ log(T )/∂ log(ki) can be calculated using our derivation in SI A.3.4. In general a faster
reaction decreases the period of the cycle (αi < 0). In order to have temperature compensation in any
cycle, at least one of the values αi should be positive [3, 14]. For the autocatalytic model, α4 is positive
and for the two-sites model α3, α6, α9, α10 are positive, therefore temperature compensation is possible in
both models. To quantify this aspect of robustness with finite perturbations, we simply assume that an
increase, or a decrease, of the temperature increases, respectively decreases, all circuit parameters with
independent factors. To estimate the robustness value, we used the same approach as ρP as described in
the main text of the article.
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B.3 KaiAC complex formation and robustness in the autocatalytic model.

Figure S2C plots, for the autocatalytic model, ρN against the model parameter k1 that is most highly
correlated with it (Spearman r = 0.921, p < 10−323, n = 1828). The Figure shows that ρN < 0.5 for more
than half the range of viable parameters. All other parameters show a partial Spearman rank correlation
with ρN (controlling for k1) lower than r < 0.35. Parameter k1 governs the rate at which KaiAC forms
from KaiA and KaiC. Its importance can be explained by the disproportionate effect a decrease in k1 has
when k1 is already low. For example, when k1 is equal to 4×10−5, this complex forms at an average rate
of 0.76h−1. If k1 decreases modestly to 10−5, this rate decreases to 0.19h−1 or one complex formation
every five hours. Because this reaction starts the cycle, the fluctuations in its rate can spread and strongly
affect the period.

B.4 KaiCS and robustness in the two-sites model.

In the two-sites model, the parameters most highly correlated with ρN are k2 and k3 (Spearman r = 0.629
and r = 0.414, respectively, p < 10−323, n = 604). All other parameters show a partial Spearman rank
correlation with ρN (controlling for k2 and k3) lower than r < 0.12. Figure S2D shows a scatterplot
of ρN against model parameter k2 over the entire range of viable parameters that spans four orders of
magnitude. With a few exceptions, ρN is smaller than 0.5 only for one quarter of this range. Parameter
k2 and k3 represent the rates of the dephosphorylation reactions KaiCST →KaiCS and KaiCS →KaiC,
respectively. KaiCS is a critical element of the negative feedback loop (red bar in Figure 2B) that
inhibits the action of KaiA. This observation explains the importance of the reactions that form and
destroy KaiCS . Low values of k2 combined with finite numbers of reacting molecules lead to greater
noise in the formation of KaiCS from KaiCST . Its concentration will thus fluctuate to a greater extent,
and these fluctuations can then be further amplified by feedback.

B.5 The distribution of local robustness in the viable region of parameter
space.

A remaining question regards the relationship between robustness quantifiers ρ and the center of the set
of viable parameters. Naively, one might assume that robustness might be highest in this center, and
that the value of any robustness quantifier decreases from this center. However, this is not generally the
case (Figure S6A-E). Specifically, only 3 and 2 out of our five robustness quantifiers show this expected
distance dependency for the autocatalytic and two-sites model, respectively, and none of these associations
exceed r = 0.25. Average local robustness ρT is also not higher at the center (Figure S6F). The same
holds if ρT is calculated through multiplication rather than averaging (not shown). In addition, regions
of parameter space exist that have higher average robustness ρT (Figure 5) than the center, and there is
a negative association between a parameter vector’s ρT and its distance to the parameter vector with the
highest ρT . This association is higher for the autocatalytic model (Spearman r = −0.355; p < 10−323,
n = 1828) than for the two-sites model (r = −0.196; p = 1.15 × 10−6, n = 604). These observations
further underscore the higher robustness of the two-sites model. They show that in the two-sites model,
robustness decreases more slowly as the distance from the region of highest robustness increases. Figure
S7 illustrates this relationship for a two-dimensional projection of parameter space.
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C Robustness analysis of the Goodwin model

The aim of this analysis is to show the feasibility of the method on models that differ in their structure
from the cyanobacterial models. We choose to analyze the Goodwin model for its generality, as most of
the eukaryotic circadian models are based on it [16, 17]. Our application of the glocal method to this
model comprises the global analysis and two local analyses: robustness to molecular noise ρN and the
cycle attraction ρA.

C.1 Model and equations

We used a three-variable model, based on the Goodwin oscillator [16–18], a generic model of circadian
oscillators. We took the same equations for this model as used by Gonze et al. in [18]. The first component
X may stand for mRNA [17]. The protein Y is produced from the mRNA and is activating the protein Z.
X is inhibited by Z. All components are degraded following Michaelis-Menten kinetics [18]. The starting
point of our PCA expansion is the parameter vector published in [18]. All parameters are allowed to
fluctuate over three orders of magnitude in the range [0.01, 10] except the Hill coefficient, which is
maintained constant at n = 4. The equations of the three state variables contain ten parameters:

dX

dt
= k1

k4
2

k4
2 + Z4

− k3
X

k4 +X

dY

dt
= k5X − k6

Y

k7 + Y
dZ

dt
= k8Y − k9

Z

k10 + Z

C.2 Results of the global analysis

For the global analysis, we defined the following systemic properties for the Goodwin model. First, the
period has to be in the range of [21.6, 26.4] hours which represents a 10% variation around the value
of 24 hours. The relative amplitude of the oscillations of the output (that we choose to be the second
component, Y ) has to be at least 40% of the peak value. Finally, the output component should have a
peak value in the ±10% range around the nominal value which is 0.4.

Using these criteria, we performed three global analyses in parallel and the results are very similar,
with a normalized volume R of 1.037, 1.039 and 1.036 for 105 parameter vectors tested during Monte
Carlo integration. Analyzing the principal components of the set of viable parameter vectors shows
that the parameters controlling the concentration of Z (k8 and k9) are strongly correlated (Pearson’s
r = 0.922, p = 2.14 · 10−287, Figure S9B): the most constrained direction (standard deviation of 0.0717,
lower arrow in S9A) has an angle of 23 degrees with the vector kmin = (0, 0, 0, 0, 0, 0, 0, 1,−1, 0). At the
other extreme, the direction kmax u (0, 1, 0, 0, 0, 0, 0, 1, 1, 1) shows a standard deviation of 1.17, which is
the largest (upper arrow in S9A). These two results show the importance of a precise regulation of the
feedback component Z: k8 controls its production and k9 its degradation. The other two parameters
of the least constrained axis kmax are related to the concentration of Z (k2, the inhibitory constant in
the production of X, and k10, the Michaelis constants for the degradation of Z). This freedom is due to
the lack of direct constraints on the component Z: because Z has an effect on the systemic properties
only through its feedback, a rescaling of the parameters k2, k8, k9 and k10 in kmax would not affect the
viability of the parameter vector.
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C.3 Results of the local analysis

In order to study the impact of the parameters on specific robustness properties, we performed local
analyses on all viable parameter vectors found with the global analysis. The first property we study is
the robustness to molecular noise, using the measure defined in section A.3.2. The values of ρN span
almost the whole possible range from 0.04 to 1 (Fig. S10A). The parameters most correlated with ρN
are k2, a constant in the production of X, and k5, the production rate of Y , with a Spearman’s rank
correlation coefficient of r = 0.501 and r = −0.431, respectively (both have a p-value below 10−323) as
shown in Figure S10B.

The second robustness quantifier we applied to this model is ρA, which measures the attraction of
the cycle (section A.3.3). It reflects how fast a small perturbation of the trajectory will be absorbed. Its
values also range from 0 to 1 with a large fraction of the parameters vectors showing high robustness
(Fig. S11A). The parameters most correlated with ρS are k1, the production rate of X, and k7, the
Michaelis constant for the degradation of Y , with a Spearman’s rank correlation coefficient of r = 0.236
(p = 5.33 · 10−15) and r = −0.440 (p < 10−323),respectively, as shown in Figure S11B.

In conclusion, this analysis shows that our method is also applicable to models with a structure
that differs from the models of the cyanobacterial circadian clock. Our results show the importance of
the control of the feedback component for the systemic properties. The local analyses reflect the high
robustness of this generic model with a large fraction of parameter vectors with values of 1 for their local
robustness. We also find the region in parameter space with the highest robustness according to the local
quantifiers.
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Figure S6: Local robustness is not maximal in the center of the viable parameter set. Shown are local
robustness quantifiers (vertical axes) plotted against the distance of viable parameter vectors
(horizontal axes) from the center of mass of the entire set of viable parameter vectors, for the
autocatalytic model (red) and the two-sites model (blue): (A) robustness ρP to parameter
perturbations, (B) robustness ρC to total concentration perturbations, (C) robustness ρN to molecular
noise, (D) attraction of the cycle ρA, (E) sensitivity of the period ρS , (F) total robustness, ρT , defined
as the arithmetic mean over all five robustness quantifiers. Maxima for all local robustness quantifiers
are not found near the center of mass, and there is only a weak correlation between a parameter vectors
distance from this center and local robustness. The two squares in each panel correspond to previously
published parameter vectors for each model [3, 4]. The sparsity of data points near the center of mass
stems from the fact that in a high-dimensional ball or ellipsoid, most of the mass is concentrated near
its surface and not near its center.
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Figure S7: Local robustness is much greater over wide regions of parameter space for the two-sites
model. Color codes indicate average local robustness ρT for the autocatalytic model (A) and the
two-sites model (B). ρT is shown in a two-dimensional projection of parameter space onto parameters
k1 and k2 in (A), as well as k3 and k7 in (B), which are the parameters most highly correlated with ρT .
Color coding ranges from blue (ρT = 0) to red (ρT = 0.737, the maximum observed between both
models).
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Figure S8: Distribution of local robustness to (A) parameter perturbations ρP and (B) total
concentration perturbations ρC for different values of the standard deviation σ of the respective
perturbations; autocatalytic model in red; two-sites model in blue. (C) and (D) show the median values
of ρP and ρC , respectively, for both models (left panels) and the relative difference between the medians
(right panels) as a function of σ. Based on this analysis, we choose σ = 0.2 for assessing local
robustness throughout the remainder of the manuscript, because this value of σ yields a broad
distribution of ρP and ρC and good discrimination between the two models.
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Figure S9: Results of the global analysis for the Goodwin model. (A) Distribution of the standard
deviations along the principal axes of the set of viable parameter vectors. (B) Projection of the viable
parameter vectors in the plane (k8, k9) for the Goodwin model. Parameters k8 and k9 are, respectively,
the production and the degradation rate of Z. Both parameters are strongly correlated, resulting in the
axis (kmin, see SI, section C) with the lowest standard deviation for the Goodwin model (lower arrow in
A). On the opposite, the other direction, kmax, shows a large allowable variation (upper arrow in A).
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Figure S10: Robustness to molecular noise ρN for the Goodwin model. (A) Distribution of the values
ρN . (B) Projection of the viable parameter vectors on the plane (k2,k5): colors correspond to the
robustness value ranging from blue for a value of 0 to red for 1. Moreover, k2 is a constant in the
production of X, and k5 is the production rate of Y .
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Figure S11: Cycle attraction ρA for the Goodwin model. (A) Distribution of the values ρA. (B)
Projection of the viable parameter vectors on the plane (k7,k8), colors correspond to the robustness
value ranging from blue for a value of 0 to red for 1. Moreover, k1 is the production rate of X, and k7 is
the Michaelis constant for the degradation of Y .




