Supplementary material A.
The biology of atherosclerosis and a more complete reaction-diffusion model

In this section we shall present an outline of the biology of atherosclerosis (section A.1). We go on to outline a mathematical model based on these ideas (section A.2). It is a rather fuller version of the reaction-diffusion model treated in the main text. This fuller model is close to that of McKay et al. [1], although some processes, in particular diffusion and chemotaxis are different. In this Appendix we shall also present (Table S1) candidate molecules for some of the modelled quantities. Table S2 contains a list of all model parameters and values where known, generally derived from in vitro and in vivo experimental systems, and wherever possible based on human material.

A.1
Review of Biological Processes 

A.1.1

Stage 1: Lipoproteins enter the intima and undergo oxidation 

In atherosclerosis, the normal functions of the endothelium are altered, instigating an inflammatory process [2]. Through mechanisms such as shear stress [3], a portion of the endothelial layer of a muscular arterial wall develops a “leaky” spot permitting accelerated transport of LDL (and other macromolecular species) through the endothelial barrier into the intima, where they tend to concentrate due to the difficulty of further passage through the inner elastic lamina into the media [4], and where they become oxidized (oxLDL), via vascular oxidative waste products.

Among the most critical reactions are the oxidation and anti-oxidation reactions involving LDL and HDL. LDL is chemically modified by reactive oxygen species (ROS) produced through metabolic processes occurring in cells within the arterial wall (e.g., vascular smooth muscle cells (VSMC), endothelial cells (EC), fibroblasts). When a ROS comes into contact with a lipoprotein, initially it reacts with vitamin E, its natural defence. To be fully oxidized, all vitamin E defences (on average 6 [5, 6]) have to be depleted. However, as yet there is no evidence from clinical trials to suggest that natural anti-oxidants (beta-carotene, vitamin C) can reduce damage caused by oxidized LDL [7]. Oxidised low density lipoprotein (LDL) is one of the factors contributing to the initiation of the atherosclerotic process [8], as we outline below.
In addition to LDL, high density lipoprotein (HDL) particles are also present in the blood, whose role is primarily the reverse transport of lipid back to the liver. HDL is capable of inhibiting oxidative modification of LDL due to its anti-inflammatory and anti-oxidant properties. However, some studies have shown that HDL can also elicit a pro-inflammatory response in macrophages and hence does not provide protection to LDL against oxidation [9].

A.1.2

Stage 2: The inﬂammatory process 

Monocytes and T-lymphocytes enter the intima in response to molecular signalling from an initiating inflammatory reaction (e.g., due to viral or bacterial insult, oxLDL) [10]. In particular when injured (e.g., by oxLDL) ECs emit adhesion molecules (on the lumenal side), growth factors (e.g., macrophage colony stimulating factor (M-CSF)) and chemo-attractants (e.g., monocyte chemo-attractant protein 1 (MCP-1)). Other inflammatory cells (e.g., monocyte-derived macrophages) also accumulate in arteries. Macrophages seek out and engulf apoptotic or foreign bodies. Macrophages have an affinity for the oxLDL – indeed, there is strong experimental evidence (e.g., ref. [11]) that macrophages exhibit positive chemotactic sensitivity to these oxLDL species. Macrophages release growth factors/cytokines (e.g., platelet-derived growth factor (PDGF), transforming growth factor-beta (TGF-(), granulocyte-M-CSF). These cytokines enhance LDL-receptor activity, perhaps due in part to the reduction of intracellular free cholesterol [12]. Due to the enhanced LDL-receptor activity, an increased amount of cholesterol is delivered to the cell. 
Eventually, the cell wall becomes lipid-engorged, as it is unable to traffic the large amounts of LDL-cholesterol esters, and the macrophage becomes a foam cell. It is then incapable of doing its customary job of removing the debris produced by the inflammatory processes. In addition, lipoprotein entrapment by the extracellular matrix can lead to the progressive oxidation of LDL, because of the action of ROS. A range of oxLDL is thus generated, ultimately resulting in its delivery to vascular cells through various families of scavenger receptors [12]. These cellular “saboteurs”, once formed or deposited in the cell, can contribute to and participate in the formation and accumulation of cholesterol esters and subsequent transformation of a macrophage into a foam cell. 
A.1.3

Stage 3: Plaque growth: smooth muscle cell migration and apop​tosis in the vasculature 

A lipid-enriched fatty streak along the arterial wall can develop. Because antioxidant defences may be limited in the microenvironment of the cell or within LDL, the oxidation process continues to progress. The growing lesion produces various molecular signalling species that attract additional macrophages to the lesion site which then get “corrupted” by the oxLDL species, resulting in a chronic inflammatory spiral [2, 13]. Another aspect of plaque growth involves the recruitment (via molecular signalling) of VSMCs to the lesion site and their role in forming a tough cap to isolate the lesion from healthy tissue and the lumen. However, in contrast to the classic paradigm, it is now clear that VSMC proliferation actually limits the growth of the atherosclerotic lesion [14]. Related to this, VSMC apoptosis is known to accelerate atherosclerotic lesion formation [15]. VSMCs also secrete chemo-attractants, in particular MCP-1 [16], into the intima. VSMCs reside in the layer beneath the intima (the media), segregated by a band of elastic tissue. Most advanced atherosclerotic lesions consist of a lipid core surrounded by a fibrous cap of VSMCs and connective tissue. In the media, VSMCs are in a contractile, non-mobile phase. However, these cells may be chemically stimulated to become mobile and migrate into the intima to surround a forming lesion [17]. As the lesion forms, the arterial wall may undergo remodelling (expansion). Continued growth results in lumenal encroachment.
There is also evidence to suggest that VSMCs respond to mechanical stress [18]. Therefore it may be that growth of atherosclerotic plaque due to cell apoptosis alters the mechanical stress (stretch) felt by the medial (VSMC) layer and induces VSMC migration from the media to the intima [19].
A.1.4

Stage 4: Plaque instability: vascular smooth muscle cell and endothelial cell apoptosis and cap degradation 

Research suggests that the primary cause of acute coronary events is break-down of the ﬁbrous cap and the consequent formation of a thrombus within the lumen. Indeed, only 15% of heart attacks and strokes are caused by the complete occlusion of the lumen by plaque growth [20].

The growth of atherosclerotic plaque does not, initially, grow into the lumen. The majority of plaque growth is into the medial (VSMC) layer and it is only after this growth has reached some limit (the artery is no longer able to compensate by dilation) that it encroaches on the lumen. The presence of such stenosis is disruptive to the local blood ﬂow and consequently the shear stress across the occlusion can vary. This variation in shear stress is thought to be the cause of plaque cap rupture. The rupturing of the atherosclerotic plaque cap can be linked with a large number of diﬀerent factors. However, crucially, all these factors lead to the destabilising and eventual rupturing of the plaque cap through cell apoptosis.

VSMC apoptosis and senescence is harmful as it weakens the ﬁbrous cap by decreasing the synthesis of extracellular matrix [14, 15] and therefore may lead to plaque rupture. It is well known that balloon angioplasty induces rapid death of VSMCs within the normal interior wall showing that mechanical stress is an important factor in VSMC apoptosis [19]. Ox-LDL has also been shown to promote VSMC apoptosis. EC apoptosis is also an important factor in plaque rupture. Recently it has been shown that EC apoptosis is signiﬁcantly increased in the downstream area of the plaque, where shear stress is low and blood ﬂow disturbed [21]; this agrees with evidence that ruptures are primarily found on the shoulder of plaques. However, apoptosis inside the plaque (that is apoptosis of macrophages/VSMCs etc) is found to be higher in areas associated with high stretch stress upstream of the plaque [19]. In addition to VSMC and EC apop​tosis, matrix metalloproteinase (MMP) secreted by macrophages [8] can actively destroy the extracellular matrix and contribute to instability in an atherosclerotic plaque.

A.2
Model of atherosclerosis 

In this section we shall consider a model based on the biological ideas outlined above. The model is constructed in a number of stages, corresponding to the various biological stages outlined in section A.1. 

A.2.1 Stage 1 processes (occurring in both the lumen and the intima) 

For modelling purposes we will assume (as did McKay et al. [1]) that monocytes and T-cells may be adequately described by their function in the stage 2 processes in the intima only. Therefore we have the following reaction-diffusion partial differential equations describing the stage 1 processes in the intima:
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where 
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 is the HDL concentration with oxidation state 
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 (the number of vitamin E molecules unoxidized - 1) (so 
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 is the HDL with all vitamin E oxidized, although itself unoxidised, 
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 is the oxidised HDL concentration), 
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 is the radical concentration, 
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 is the anti-oxidant concentration, 
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 are the rates (per unit radical concentration) of oxidation of LDL and HDL (with oxidation state 
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 are the rates (per unit anti-oxidant concentration) of de-oxidation of LDL and HDL (with oxidation state 
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 is the rate of reduction of free radical as a result of oxidation reactions with vitamin E and HDL and 
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 is the rate of reduction of anti-oxidant as a result of anti-oxidation reactions with vitamin E and LDL or HDL; it is assumed that this is proportional to the reaction rates with the respective LDL and HDL species, as also did McKay et al. [1] and Cobbold et al. [22]. 
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 is the rate of conversion per unit of fully oxidized LDL and per unit macrophage concentration to lipid-bound LDL (i.e. to LDL ingested into macrophages). All other species are as in section 2 of the main text. It should be noted that we explicitly model the various oxidation stages of LDL and HDL, which McKay et al. [1] do not. This model was suggested by Cobbold et al. [22]. The oxidation states of HDL are also explicitly modelled, a feature of the present model that was not taken into account by McKay et al. [1], although it was by Cobbold et al. [22]. 
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 are the rates of diffusion of LDL, HDL (oxidation state 
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), radicals and anti-oxidants, respectively. In the lumen, a similar set of equations holds for the stage 1 processes, but account must also be taken of the blood-flow velocity 
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where 
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 are the rates of diffusion of LDL, HDL, radicals and antioxidants in the lumen, respectively. It is to be expected that in the lumen the lower levels of radicals and greater antioxidant content [22] mean that many of the terms involving 
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Note that in this model the main “source” of LDL and HDL and various other species (e.g., free radical and anti-oxidant) in the intima will be diffusion across the arterial wall, and so dealt with by boundary conditions there. Possibly this will be the case for the “sink” term as well. However, in the lumen it is possible that we shall require source and sink terms for some of these species, in particular the unoxidised HDL and LDL, 
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, respectively. 
A.2.2 Stage 2 processes (occurring in the intima only) 

The processes occurring exclusively in the intima are those of stages 2 and 3. The stage 2 processes involve cell motion and therefore generally require the concept of chemo​taxis, the movement of cells up a chemical gradient. Chemotaxis has been described mathematically by Keller and Segel [23, 24] and Murray [25]. However the governing equations for chemo-attractant and proliferation molecules do not require this concept and may be modelled by similar types of reaction-diﬀusion processes as those of sec​tion A.2.1. Oxidative modification of lipoproteins, as described in section A.2.1, may result in a variety of products of lipid peroxidation, affecting the arterial wall. Therefore we have:
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where 
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 are the undamaged and damaged EC concentrations, 
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 is the chemo-attractant concentration, 
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 is the proliferation factor, 
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 is the monocyte concentration, 
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 is the bound lipid concentration and 
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 are the chemo-attractant production rates due to damaged ECs, macrophages, T-cells and VSMCs, respectively. Our assumption that chemo-attractant is produced by damaged ECs is not made by McKay et al. [1]. 
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 is the bound lipid ingestion rate per unit concentration macrophage and per unit concentration of fully-oxidised LDL. 
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 is the death/degradation rates of the damaged ECs.

We assume that the bound lipid ingestion rate, 
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. In particular we shall usually assume that the former is some decreasing function of this ratio, and that the latter is some increasing function of this ratio. McKay et al. assume that:
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for some (positive) constants 
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 is the rate of macrophage death at zero lipid concentration. The data of Zhao et al. [26] suggest a slightly different form for the ingestion function:
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Lacking any data on shape of dose response, we shall assume a linear relation between macrophage mortality and bound lipid concentration (i.e. 
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A.2.3 Stage 3 processes (occurring in the intima only) 

These processes occur exclusively in the intima and again require the concept of chemotaxis, at least for modelling of VSMC (
[image: image68.wmf]S

). Therefore we have the following sets of reaction diffusion equations:
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where 
[image: image72.wmf]S

 is the VSMC concentration, 
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 is the collagen concentration and 
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 is the necrotic core concentration. Here 
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 is the collagen augmentation rate per unit of VSMC concentration. 
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 are the destruction/degradation rates of collagen per unit of T cells and per unit of macrophages. It should be noted that the necrotic core is also augmented by dying macrophages (the 
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Supplementary material B.

Spatially averaged solutions of perturbed equilibrium solution from simplified reaction-diffusion model in main text
We present solutions to the perturbation equations (42)-(48) in various cases. In general we have: 
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It is immediate from equations (31)-(32) that:
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and when, further, all 
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and we can then write analytic forms of (B.5), (B.7):
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(B.7’)

If we assume that 
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Clearly, from (B.8) and (B.9) if 
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If we assume that 
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for some 
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