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Notes

The main text refers to the following additional notes.

1. This is often called information-threshold or error-threshold problem; however, the problem itself
is actually independent of the existence of threshold-like behavior (i.e. abrupt transition) in the
replicator dynamics [1].

2. We also studied a case without this assumption, where the sum of the folding rate and unfolding
rate equaled to κ. The results were essentially the same as explained in this paper.

3. kL and l are bounded in [0,1], where we used reflecting boundary so that, without selection, mu-
tations generate uniform distribution. To be more precise, let kL be originally x, and y be drawn
from [−δ/2, δ/2]. If x + y < 0, kL becomes −x− y; if x + y > 1, kL becomes 2− x− y.

4. It is possible to set the size of vesicles and diffusion inside vesicles so as to allow the formation of
traveling waves within vesicles. However, such a system is better considered a hybrid of the models
investigated in this study. Because the purpose of the current study is to compare two different
mechanisms of multilevel selection, we do not investigate such a hybrid model.

5. We also considered the stability of the the equilibrium with extinction (i.e. R = L = CR = CL = 0,
which is always locally stable due to the Allee effect [2]), since if this equilibrium were less stable,
the replicator coexistence might be relatively more stable. However, this line of analysis was also
unsuccessful for the same reason as before.

6. The diameter of a colony (sphere) is about 200µm for a template of 120 bases in 15% acrylamide
gel (5% bis) [3]. We assumed that the amplification factor of PCR is 108 [4]. Assuming uniformity
within a colony, the concentration of polynucleotide is about 40 nM. We assumed that the diffusion
constant of ssDNA of 120 bases is 5×10−9 cm2/sec in the same gel at 55◦C [5]; hence, the root mean
square displacement (

√
6Dt) is about 5.5µm in 10 sec. Moreover, it is assumed that the generation

time is 10 sec, given the speed of polymerization ranging from 30 nt/sec (Qβ replicase [6]) to 110-
300 nt/sec (Taq pol/KOD polymerase [7]).

7. There are two aspects in the influence of diffusion on the replicator dynamics: the number of
distinct replicators one replicator can potentially interact with; the frequency at which a replicator
interacts with any replicators. The former is related to the spatial correlation between replicators
and has been investigated in this study, whereas the latter is related to the Allee effect [2], and
the current models have implicitly assumed that it causes not much problems by assuming a high
density of replicators within immediate interaction distance (cf. [8]). In the main text, the reduction
of the concentration or the diffusion constant of templates was suggested by considering the former
aspect; however, there is thus a caveat in that suggestion because the latter aspect can make a
system inviable in reality.

8. For example, in the classical model of group selection, trait X is defined by its fitness effect aX to
its carrier and by its fitness effect bX to the other individuals [9]. X is considered either altruistic
or egoistic depending on the value of aX and bX .
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9. In the current model, we could consider, e.g., having a great value of kL and l as a “trait”. However,
not being explicitly defined by the model, what selective (dis)advantage such a trait brings to what
entity had to be discovered by analyzing the replicator dynamics at multiple levels.

Extension of Eqn. 2 to a System with Two Parasite Species

Ṙ = −2kRR2 + [2(1− kR) + 3κθ + 2d]CR +
2∑

i=1

{−kLiRL + [(1− kLi) + κθ + d]CLi} − dR,

ĊR = kRR2 − [(1− kR) + κθ]CR − 2dCR,

L̇i = −kLi(1− li)RLi + [(1− kLi) + 2κθ + d]CLi − dLi,

ĊLi = kLi(1− li)RLi − [(1− kLi) + κθ]CLi − 2dCLi ,

where i denotes different species of parasites; and θ ≡ 1 − R − 2CR −
∑

i[Li + 2CLi ]. All numerical
calculations in this study were done by using either GRIND [10] or CONTENT [11].

Details of the Replicator CA Model

The dynamics of Reaction 1 was modeled in stochastic cellular automaton (CA) framework. The model
is a spatially extended, individual-based, Monte Carlo simulation model. It consists of a two-dimensional
square grid and molecules located on the grid. One square in the grid can contain at most one molecule,
which is either R or L; empty square is considered as the generalized resource for replication (θ in
Reaction 1). A complex molecule is represented by two molecules that have an appropriate “flag” and are
located in contiguous squares, where contiguity is defined as the eight nearest squares (Moore neighbors);
hence, CR consists of two R molecules, and CL consists of one R and one L molecule. The state of the CA
is fully specified by the spatial distribution of molecules with flag information. The temporal dynamics
is run by consecutively applying the stochastic algorithm that simulates Reaction 1 and diffusion.

The reaction-diffusion algorithm effectively runs as follows:

1. Randomly choose one square from the plane (every square with an equal probability).

2. Randomly choose one of the eight nearest squares of the square chosen first. Depending on the
contents of the two, the reactions that can happen, the possible reactions, are determined (including
teh first-order reactions such as decay). For example, if the two molecules are parasites (L), the
complex formation reaction is not included in the possible reactions.

3. Execute one of the possible reactions with a probability calculated as the reaction rate constant
multiplied by a common constant α. The value of α is chosen such that the maximum possible
value of the sum of the probabilities of the possible reactions is less than 1.

Diffusion is considered as a second-order reaction with rate constant D (which is proportional to the
macroscopic diffusion constant), and it is implemented by swapping the content of two squares. If complex
molecules diffuse, swapping is done so as to maintain the association of molecules (see below). Diffusion
and reaction across the grid boundaries are prohibited (no-flux boundary condition). The application of
the above algorithm for N2 times, where N2 is the number of squares in the grid, is arbitrary defined as
one time-step of replicator dynamics.

The algorithm described above was obtained by slightly modifying one described in [12], wherein it was
shown that the dynamics under that algorithm approached that of the Gillespie algorithm when D →∞
with N being constant. The current modification (see below) preserves this property and enhances the
applicability of the algorithm to a situation wherein the number of possible higher-order reactions is huge
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because of great diversity in the kinds of molecules. The C++ program that implements the current
model is available from the authors upon request.

The details of diffusion algorithm involving complex molecules are as follows. There are three possible
cases in which swapping involves a complex molecule: (1) one molecule is forming a complex with some
molecule, and the other is not; (2) the two molecules are forming a complex with each other; and (3)
each molecule is forming a complex with other molecules. In case (1), let x and y be the squares chosen
for diffusion (it does not matter which is chosen first), and let us suppose that x contains a non-complex
molecule or is empty, and y contains a complex molecule. Let y′ be the square containing the molecule
with which the molecule in y is forming a complex. Then, swapping is done as follows: the molecule in
x is moved to y′; the molecule in y is moved to x; the molecule originally in y′ is moved to y. In case
(2), the two molecules swap their position (i.e. the rotation of the complex molecule). In case (3), let us
suppose that x also contains a complex, and let x′ be the square containing the molecule which which the
molecule in x is forming a complex. Then, swapping is done as follows: x → y′; x′ → y; y → x′; y′ → x,
where arrows mean that the molecule originally in the left square will be moved to the right square.

The details of the aforementioned modification are as follows. In the previous algorithm, the reaction
that happened to the molecule in the first chosen square was determined before choosing the second
square. Firstly, all possible second-order reactions the molecule in the first square could experience were
included in the possible reactions. Secondly, the probability of each possible reaction was calculated by
multiplying α to its rate constant. Thirdly, according to these probabilities, one reaction was chosen.
Fourthly, if the chosen reaction was a second-order reaction, a neighboring square was chosen. Finally,
if the neighboring square contained the right type of molecules for the reaction to happen, the reaction
actually happened; otherwise, nothing happened. In the current algorithm, we chose one neighboring
square before choosing one from the possible reactions in order to restrict the kind of complex formation
reactions the molecule in the first chosen square could go through. Such a reversed procedure was not
done for other second-order reactions such as the replication reaction and diffusion because their rate
constant, κ and D, was always identical.

Cellular Potts Model

Cellular Potts Model (CPM) is two-scale stochastic CA, in which the rules of updating the CA pertain
to the scale of neighboring grid squares and to the scale of a “vesicle” that consists of a number of grid
squares [13,14]. Each vesicle has a unique state, which is assigned to the grid squares that constitute the
vesicle. There is also one state representing non-vesicle state, called medium state. The CA is updated
with stochastic algorithm minimizing “energy” H defined as

H =
∑

(i,j)∈S

J(i,j) +
∑

k

λ(vk − Vk)2, (1)

where (i, j) denotes a pair of squares that are a neighbor of each others, where eight nearest squares
are considered as neighbor (Moore neighbors)1; S is a set of all such pairs (not permutations, but
combinations); J(i,j) is energy associated with an interface between different vesicles or between a vesicle
and the medium, and it depends on the state of square i and j as explained soon; k denotes a vesicle,
and it runs through all vesicles in the summation; vk denotes the volume of a vesicle, i.e. the number
of squares that constitute the vesicle; Vk denotes the so-called target volume (neither v nor V exists for
the medium); λ is a parameter and is set to 1 throughout this study. The current study defines J(i,j)

as follows: J(i,j) = 3 if i 6= j, and i and j are vesicle states (i.e. if the two squares belong to different
vesicles); J(i,j) = 1 if i 6= j, and either i or j is the medium state; J(i,j) = 0 if i = j. For these values of

1This definition of neighborhood is rather arbitrary. For example, the neighborhood defined in [15] might be more
realistic since the Moore neighborhood introduces anisotropy. However, this would hardly matter for the current study.
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J , a vesicle tends to be more often in contact with media than with other vesicles. The actual algorithm
of updating the CA runs as follows:

1. Chose one square (denoted by x1) from the grid in a random order such that the same square is
not chosen twice until every square is chosen.

2. Randomly chose one (denoted by x2) of the four nearest squares of x1 (von Neumann neighbors).

3. Calculate the difference (denoted by ∆H) by subtracting the current value of H from the value of
H if the state of x2 were copied to x1.

4. If ∆H < 0, copy the state of x2 to x1. If ∆H > 0, copy the state of x2 to x1 with a probability
exp(−∆H/T ), where T is a parameter and is set to 1 throughout this study.

The application of this algorithm for N2 times, where N2 is the number of squares in the grid, is defined
as one time-step of the CPM. The dynamics of the CPM is run for one time-step per every Int(M/α)
time-steps of the replicator dynamics, where Int(x) is the nearest integer to x; α is defined in the previous
section; M was tuned to obtain a reasonable model behavior and was set to 6.62 throughout the current
study.

The division of vesicles are as described in the main text, and it can happen once per CPM time-step
for every vesicle.

The target volume V decays by an amount drawn from the Binomial distribution with the number
of trials V and the success probability dV , and this happens to every vesicle once every time-step of the
replicator CA (hence, dV is called the decay rate of target volume).

Behavior of the Surface Model for Greater Diffusion Rates

The appearance of spatial pattern differs between D = 0.1 and D = 1 as shown in Fig. S3 (which is found
in this document). The pattern is clearly traveling waves for D = 0.1, whereas it appears like spots for
D = 1. However, as Movie S5 shows, these spots actually move in a random, yet persistent direction.
This suggests that the spot-like pattern can be considered as short-lived traveling wave. This difference in
the appearance of spatial pattern has an interesting consequence, in that the dependency of the system’s
stability (i.e. the survival range of kL and l and µmax

l ) on the system’s size (i.e. N) was smaller for D = 1
than for D = 0.1 (data not shown). Although against the common expectation, this is simply because
traveling waves are small for D = 1 since they are short-lived.

To understand why the system with a greater diffusion rate displays spot-like short-lived waves, we first
investigated the stability of an isolated traveling wave for different diffusion rates—i.e. the death process
of an isolated wave. Fig. S4 (which is found in this document) shows the spatio-temporal dynamics of an
isolated traveling wave under some idealized initial and boundary condition. The result shows that the tip
of a traveling wave rotates in an opposite direction for D = 0.1 and 1. For D = 0.1 the counterclockwise
rotation allows the wave to persist indefinitely if not limited by space. For D = 1 the clockwise rotation
will, in a long term, annihilate the wave. However, the width of the wave increases as it travels both
for D = 0.1 and D = 1, which is most easily seen at the bottom boundary of the grid. This means
that the traveling wave would be stable for both diffusion rates in one-dimensional space. Thus, in two-
dimensional space, the stability of a traveling wave, depending on D, hinges on the characteristics of
the wave tip. This is because the wave tip is inevitably small in size, so that diffusion can homogenize
the spatial structure at the wave tip more easily than at the other parts of the wave. Greater diffusion
will bring the local replicator dynamics closer to the deterministic well-mixed system, which implies the
eventual extinction is more likely at wave tips. Consequently, an isolated traveling wave is unstable for
D = 1. However, it must also be noted that a wave can persist for D = 1 for quite a long time before
annihilation depending on the initial condition as seen from Fig. S4 (cf. Movie S5).
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Figure 3. (Figure S3.) Snapshots of the simulations of the surface model for different
diffusion rates. The mutation was disabled (µkL

= µl = 0). N = 1024. The other parameters not
shown in the picture were the same as in Fig. 2.

The last point naturally leads us to consider the establishment of new waves—i.e. the birth process
of waves—for different diffusion rates. We can immediately see that the smallness of a newly generated
wave is again important. Given the previous argument concerning wave tips, this implies two points.
Firstly, for a greater diffusion rate, the establishment of a new wave and the stability of an isolated
(established) wave can be considered as directly connected aspects. Given this point, it can be expected
that the system with D = 1 displays spot-like short-lived waves. Secondly, the stability of wave dynamics
still hinges on the transient growth of a small population of replicase and parasite molecules.

The second point implies that the evolutionary dynamics for greater diffusion rates is expected to
be essentially the same as that observed for a smaller diffusion rate. However, we have been unable
to observe any long-term evolutionary trend for a greater diffusion rate (D = 1). Since the system is
less evolutionarily stable for D = 1 (Fig. 12A), we had to choose small mutation rates and mutation
steps (e.g. µkL

= µl = 0.0005 and δ = 0.02; the value of N had also to be increased, e.g., to 1536).
To check if this was because of too small mutation rates and step, we also examined the system with
a smaller diffusion rate (D = 0.1) with the same mutation rates and step. The result showed that the
system displayed qualitatively the same long-term evolutionary dynamics as presented in the main text.
Moreover, the evolutionary trajectory exhibited a step-wise movement (so-called punctuated equilibria),
where the size of steps was comparable to the value of δ. This implies that the difference between the “wild
type” parasites and the beneficial mutants—which influences the effectiveness of the wave-level selection
against random fluctuations—is the limiting factor in the long-term evolution. Given this implication,
we next examined whether the wave-level selection could be effective at all for D = 1. For this sake,
we conducted a competition experiment wherein the two populations of parasites greatly differ in the
parameter values (viz., kL ≈ 0.58 and l ≈ 0 versus kL ≈ 0.76 l ≈ 0.38). The result showed that the
parasite with greater kL and l value was more adaptive, which is in concordance with the direction of
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Figure 4. (Figure S4.) Stability of an isolated traveling wave for a greater diffusion rate
under an idealized condition. The picture is overlay of simulation snapshots taken consecutively
beginning at time zero (for D = 0.1, the time span between each picture is 1784; for D = 1, it is 4950).
Part of the snapshots are blurred for visibility. The red lines and black arrow represents the temporal
dynamics of the wave geometry. The parameters not indicated in the figure were the same as in Fig. S3
(the value of l is chosen so as to be slightly below the lower survival boundary depicted by Fig. 11). The
initial condition was set in a rectangle domain as depicted by the first snapshot (the size of rectangles
scale with

√
D). The boundary condition was modified such that the left and right boundaries are

connected (like torus) while the top and bottom boundaries were kept as before (i.e. blocking
boundary). For D = 1, the simulation was stopped before the system reached equilibrium due to
computational overload (the CA size was N = 5120); however, a smaller scale simulation (by 1/

√
10)

showed that an isolated traveling wave does annihilates in a long term (not shown).

the wave-level selection. To conclude, the above considerations imply that the wave-level selection does
exist for the greater diffusion rates, but is probably too weak to be effective against random fluctuations
for the values of δ for which the system can survive.

Finally, although we have been considering the system with greater diffusion rates at length, we must
note that the system with greater diffusion rates shows so little mutational stability (Fig. 12A) that it
might be irrelevant to consider this region of the parameter space in the current model anyway.
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