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Derivation of transition probabilities for the 2-state model

Here, we derive the relationship between the first order reaction rate constants, kon and koff,
and the Markovian transition probabilities, p12 and p21 (equations 3-5 in main text). We define
p12(t) to be the probability that a particle that is initially in state 1 (i.e. at time 0) is found in
state 2 at a later time t > 0. The probabilities p11(t), p21(t) and p22(t) are defined analogously.
Also, by definition,

p11(t) = 1− p12(t) and p22(t) = 1− p21(t). (S1)

The first order transitions D1
kon−→ D2 and D2

koff−→ D1 are exponential processes with character-
istic times, 1/kon and 1/koff, respectively. Therefore, for a small interval δt,

p12(δt) ' kon δt and (S2)
p21(δt) ' koff δt. (S3)

Next, consider a time interval t + δt, for which

p12(t + δt) = p11(t) · p12(δt) + p12(t) · p22(δt) (S4)
' [1− p12(t)] · konδt + p12(t) · [1− koffδt]. (S5)

It follows that:
dp12

dt
= lim

δt→0

p12(t + δt)− p12(t)
δt

= −(kon + koff)p12 + kon (S6)

with the initial condition p12(0) = 0. This differential equation is easily solved using the inte-
grating factor e(kon+koff)t, to obtain equation 3:

e(kon+koff)t dp12

dt
+ (kon + koff) e(kon+koff)t p12 = kone

(kon+koff)t∫ t=τ

t=0
d

[
e(kon+koff)tp12

]
= kon

∫ τ

0
e(kon+koff)tdt

e(kon+koff)τp12(τ) =
kon

kon + koff

[
e(kon+koff)τ − 1

]
p12(τ) =

kon

kon + koff

[
1− e−(kon+koff)τ

]
. (S7)

By symmetry, switching kon and koff in the above expression leads to the equation for p21(τ)
(equation 4).
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Parameter estimates for simulated tracks

In Table S1 maximum likelihood parameter estimates from fitting simulated 2-state trajectories
are shown for a range of simulation parameters. In Fig. S1 error and dispersion in parameter
estimates are plotted as a function of the trajectory length.

Identification of optimal model

We simulated a set of Browninan diffusion trajectories and analyzed them with a 1-state as well
as a 2-state model. As expected, Dmle, for a 1-state model recovered the diffusion coefficient.
When analyzed with a 2-state model, we observed one of two behaviours shown in Figure S2.
Either estimates for both D1 and D2 coverged to the same value while the transition probabilities
did not converge to any particular value (Fig. S2A, B), or, less frequently, only one of the two
diffusion coefficients converged to the true diffusion coefficient, and the transition probability
leading out of that state converged to a very small number (Fig. S2C, D). In other words, the
state with the convergent diffusion coefficient essentially behaved as an absorbing state. Either
of these outcomes implied that, on the timescale of the track acquisition, the 2-state model
essentially collapsed to a 1-state model. Based on the Akaike criterion, the 2-state model was
rejected because of the greater number of parameters relative to a 1-state model. In contrast, the
2-state HMM, when applied to a set of 2-state trajectories, accurately recovered the simulation
parameters, and was judged significantly better than a 1-state model, on the basis of their Akaike
weights.

Next, we segmented an ensemble of LFA-1 trajectories using a 2-state HMM and separately
analyzed the particle displacements belonging to each state using a 2-state model (Figure S3;
see text for details).
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