
 

Supporting Information for 

 

Circadian KaiC Phosphorylation: A Multi-layer Network 

 

Congxin Li, Xiaofang Chen, Pengye Wang, Weichi Wang*

 

*To whom correspondence should be addressed. E-mail: weichi@aphy.iphy.ac.cn 

 

 

 

This supporting information contains: 

1. Detailed methods for the full network 

2. Additional results 

3. References 

 

 

 

 

 

 

 

 1



Table of contents 

 

1. Detailed methods for the full network…………………………………………………............ 3 

     1.1 Kinetic equations for the full KaiC reaction network…………………………………………………… 3 

     1.2 Estimation of free energy of activation for phosphorylation 

(or dephosphorylation) and Kai protein interactions…………………………………………………..… 6 

1.2.1 Free energy of activation for KaiC phosphorylation and dephosphorylation………………………………………… 7 

1.2.2 Transformation between ST representation and subunit representation………………………………………….…. 12 

1.2.3 Free energy for Kai protein interaction…………………………………………………………………...…………. 15 

1.2.4 A simple coarse-grained normal mode analysis…………………………………………………………..…………. 15 

1.2.5 Estimation of parameters……………………………………………………………………………………………..23 

2. Additional results…………………………………………………………………………….. 29 

2.1 Functional differentiation between S431 and T432……………………………………………………. 29 

2.2 Stochastic simulation of the Kai reaction network………………………………….…………………. 30 

2.3 Diverse circadian patterns of KaiC phosphoforms……………………………………………….……. 31 

2.4 Temperature compensation in Kai system…………………………………………………….……….. 32 

2.5 Bifurcation diagrams for variations in concentration of KaiA and KaiB………………………..…….. 33 

2.6 Dynamics of Kai oscillator under concerted changes in protein concentrations………………………..34 

2.7 Synchronization of different phased Kai samples……………………………………..………………. 36 

2.8 Simulation of mixing Kai samples with non-standard concentrations……………………………….....37 

2.9 Reduced model and monomer shuffling………………………………………………….……………. 39 

2.10 Dynamic phase shifts by transient variations in KaiA concentration………………………………….40 

3. References…………………………………………………………………………..…………. 43 

 2



1. Detailed methods for the full network 

  This section contains two parts. The first part (1.1) illustrates the kinetic equations 

for the full Kai network. The second part (1.2) introduces the quantitative method for 

the estimation of all the kinetic constants. 

 

1.1 Kinetic equations for the full KaiC reaction network 

To describe the dynamics of the Kai system, we use the ST representation Ct 
s  to 

establish the full network and the corresponding kinetic equations. As defined in the 

main text, C t 
s  stands for one KaiC hexamer with s S431 and t T432 site(s) 

phosphorylated. ST representation is convenient to outline a clear topological 

structure of KaiC network shown in Fig. S1A-B.  
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Fig. S1. Main schemes for Kai full network. (A) The framework of the two-layer network. The 
upper network represents the LC layer, while the bottom the LBC layer. (B) Detailed description 
of an element unit (in red) in Fig. S1A. (C) Illustration for the hierarchical decomposition of the 
free energy of activation. The local mode (red) is mainly restricted at the reaction interface. The 
quasi-local mode (blue) can be dispersed within the two co-interface subunits even up to the 
border of next interface. The global mode (green) propagates throughout the whole KaiC hexamer. 
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Deterministic mass action law and rapid equilibrium method are applied to the full 

reaction network. KaiA-KaiC binding is described by rapid equilibrium method and 

we have: 

[C ] [LC ]
[A]

t
t s t
s st

s

Ka
Ka

=
+

                          (6) 

[A][AC ] [LC ]
[A]

t t
s st

sKa
=

+
                         (7) 

where [LC ] [C ] [AC ]t t t
s s s= + , and t

sKa  is the dissociation constant. 

The reaction rate of association-dissociation of KaiC and KaiB (two KaiB dimers 

binding to one KaiC hexamer) is described by: 

2
2[C ][B] [B C ]t t t t t

s s s s sJBC kb kdb= −                    (8) 

where t
skb  and t

skdb  are the rate constants for KaiB-KaiC association and 

dissociation, respectively. The formation of KaiABC is depicted by rapid binding of 

KaiA to KaiBC, and three KaiA dimers binds to KaiBC in a sequential manner. 

Moreover, we assume the affinity of KaiA to KaiBC is not influenced by the number 

of KaiA already bound on KaiBC. Using rapid equilibrium method, one can have: 

3

2 3 2 2 3

( )[B C ] [LBC ]
( ) ( ) [A] ( )[A] [A]

t
t ts
s st t t

s s s

Kba
Kba Kba Kba

=
+ + +

           (9) 

2

2 3 2 2 3

( ) [A][AB C ] [LBC ]
( ) ( ) [A] ( )[A] [A]

t
t ts
s st t t

s s s

Kba
Kba Kba Kba

=
+ + +

          (10) 

2

2 2 3 2 2 3

( )[A][A B C ] [LBC ]
( ) ( ) [A] ( )[A] [A]

t
t ts
s st t t

s s s

Kba
Kba Kba Kba

=
+ + +

         (11) 

3

3 2 3 2 2 3

[A][A B C ] [LBC ]
( ) ( ) [A] ( )[A] [A]

t t
s st t t

s s sKba Kba Kba
=

+ + +
         (12) 

Where 2 2 2 2 3[LBC ] [B C ] [AB C ] [A B C ] [A B C ]t t t t
2

t
s s s s= + + + s , and t

sKba is the dissociation 
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constant for each reaction step between KaiA and KaiBC. The association and 

dissociation of KaiB-KaiC are much slower than those of KaiA-KaiC. Additionally, 

the amount of KaiAC is less than that of KaiBC [1]. Thus, for simplicity, the other 

pathway of KaiABC formation, namely AC B ABC+ ↔ , is not included.  

Due to the rapid equilibrium between KaiC and KaiAC, their phosphorylation 

and dephosphorylation processes can be technically described by the dynamics of the 

combined mode LCt
s  ( LC  for short). The same technique is also used in LBCt

s  

( LBC  for short) layer. We neglect several reaction processes because of their relative 

small rates (comparing to their reaction rates in the opposite direction), i.e. 

phosphorylation (at both S431 and T432) of free KaiC and KaiBC, dephosphorylation 

(at both S431 and T432) of KaiAC.  

The kinetic equations for the whole reaction network are as follows: 

1 1
0 6 0 1 6 1

[LC ] ( ) ( ) ( ) ( )
t

t t t t t t t ts
t s s t s s s s s s s s

d Japt Jdpt Jdpt Japt Japs Jdps Jdps Japs JBC
d

η η η η
τ

− +
− += − + − + − + − − t

s

(13) 

1 1 1
0 6

0 1 6 1 1

[LBC ] ( ) (

                  ( ) ( )

t
t t t t t ts

t s s s t s s s

t t t t t t

)

t
s s s s s s s s

d Jabpt Jbdpt Jabdpt Jbdpt Jabdpt Jabpt
d

Jabps Jbdps Jabdps Jbdps Jabdps Jabps JBC

η η
τ

η η

− + +

− + +

= − − + + −

+ − − + + − + s

 

(14) 

1       
0      kl

k l
k l

η
≠⎧

= ⎨ =⎩
 

T
,

[B] [B] 2 [LBC ]t
s

s t

= + ∑                                                 (15) 

T 2 2 2
,

[A] [A] ([AC ] [AB C ] 2[A B C ] 3[A B C ])t t t
s s s

s t

= + + + +∑ 3 2
t
s

                       (16) 

where  , 0,...,6s t =

There are totally 100 equations for the full Kai network. 98 (2×49) of them are 
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ordinary differential equations for phosphorylation and dephosphorylation reactions. 

As s and t goes from 0 to 6, respectively, two sets of ordinary differential equations 

can be automatically generated from Eq. 13 and Eq. 14. Each set contains 49 

equations, describing the dynamics of 49 nodes in LC or LBC layer. The notation klη  

is useful to generate the correct forms of equations describing the nodes on the edges 

of the network. Other two algebraic equations (Eq. 15 and 16) represent the mass 

conservation law for KaiB and KaiA in the whole network, respectively. The mass 

conservation for KaiC can be examined by summing the first two sets of ODEs. The 

expressions and descriptions of reaction flows J in the equations are listed in Table S1. 

Note that , and , share the same rate constants of 

phosphorylation and dephosphorylation. 

t
2 sAB C t

2 2 sA B C t
3 2 sA B C

 

1.2 Estimation of free energy of activation for phosphorylation (or 

dephosphorylation) and Kai protein interactions 

The total number of kinetic rate constants and dissociation constants is 616 for the 

full Kai network. However, it is unreasonable to manually assign the values to 616 

parameters. Thus, we introduce a quantitative method to correlate the kinetic 

parameters with KaiC phosphorylation states. 

Briefly, we use an approximate method to literally calculate all the reaction rates 

and dissociation constants in our model. It is difficult for us to directly compute the 

values of kinetic constants for every hexameric KaiC phosphoform ab initio. However, 

we can deduce the intrinsic correlations among KaiC phosphorylation (or 
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dephosphorylation) rates and among the dissociation constants of Kai protein 

interactions. In principle, the network represents the time evolution of one KaiC 

hexamer from  to , so the kinetic property of each state of KaiC (each node in 

the network) is inherently correlated with others. This characteristic of Kai network is 

the basis of our estimation. Technically, we analyze the relations between free 

energies of activation and KaiC phosphorylation levels based on intra- and 

inter-subunit interactions within one KaiC hexamer. Then, we estimate the quantity 

scale of the free energies so that they fall into the scale of free energies of general 

biochemical reactions, e.g. elementary Ser/Thr phosphorylation, ATP hydrolysis. The 

obvious strength of our method is that it can automatically generate 616 kinetic 

constants (see Table S4) with only 88 basic parameters (λ, σ and ω, see Table S5) in 

our model. In fact, the 88 parameters are not fully independent and must be chosen 

under the strict reasoning and extra constraints. The qualitative and semi-quantitative 

analyses of constraints among the 88 parameters are described in section 1.2.5.  

0
0C 6

6C

Further, we are aware that the high dimensional variable and parameter spaces in 

our work may hinder the practical use of the model in further experimental and 

theoretical studies. In our pending work, based on the works by Winfree [2] and 

Kuramoto [3], we could get a simplified yet useful model which can be integrated into 

the future in vivo circadian model in cyanobacteria. 

 

1.2.1 Free energy of activation for KaiC phosphorylation and dephosphorylation 

The finding of ATPase activity on KaiC hexamer encourages us to hypothesize the 
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ATP hydrolysis by KaiC ATPase is the main driving force to regulate (not initiate) the 

circadian KaiC phosphorylation. As shown in Fig. 1B (in the main text), an isolated 

phosphorylation site has a high free energy of activation, and it is difficult to 

self-regulate its own phosphorylation (or dephosphorylation) because there is no 

interactions with its neighbors. Taking the advantage of the ATP hydrolysis, isolated 

KaiC monomers can form stable and coordinated hexamer at both ground state and 

transition state. Therefore, the apparent free energy of activation for a KaiC hexamer 

contains, in principle, all the structural information of the six subunits, which may 

serve as the basis for self-regulated phosphorylation (or dephosphorylation). 

The decomposition of free energy may provide us a deep insight into the 

hierarchical energy landscape in KaiC circadian phosphorylation. In general, no 

adequate evidence is available to show what type(s) of thermodynamic change(s) 

(entropic and/or enthalpic) can be defined corresponding to the energy diffusion 

modes. High frequency modes are generally localized in proteins and thus hinder the 

intra- and/or inter-molecular communications [4]. However, the model based on the 

experiment of protein-DNA interactions suggests that a coupling of fast, local modes 

with the slow, global modes in favor of a potential amplification of entropic allostery, 

and such coupling gives rise to large compensation in enthalpy and entropy in 

proteins [5]. We infer that the wide-type KaiC of S. elongatus PCC 7942 accords with 

the last type in energy distribution at transition state. Here, we may deal with the 

KaiC hexamer as an energy carrier, and an information processor.  

As illustrated in Fig. S1C, We roughly dissect the free energy change into three 
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hierarchical levels: the largest portion localized at the reaction interface (local mode), 

the relative small part of the energy that can be dispersed in the two co-interface 

subunits even up to the border of next interface (quasi-local mode), and the smallest 

portion that propagates throughout the whole KaiC hexamer (global mode). This 

three-leveled decomposition of free energy is definitely not unique, and a later 

analytic derivation in section 1.2.4 suggests the existence of much fine levels of 

interaction energies. 

Based on the assumptions above, we can estimate the form of UχΔ  and UτΔ  in 

Eq. 1 (in the main text). For clarity, interfaces in one KaiC hexamer are numbered 

from 1 to 6 clockwise, assigned as , and  is assumed to be the reaction 

(phosphorylation or dephosphorylation) interface, shown in Fig. S1C. 

I  ( =1 to 6)k k 1I

UχΔ  and 

UτΔ  can be expressed as: 

6

1
i

i
U E Hχ χ

=

Δ = Δ +∑                          (17) 

6

1
2

i
i

U E E Hτ τ
≠

=

Δ = Δ + Δ +∑                      (18) 

where iEΔ  is the local mode energy of each non-reaction interface that mainly 

serves as the hinge holding the subunits together to form a stabilized and integrated 

hexamer, and 1E≠Δ  plays the same part for the transition state interface (here for ); 1I

Hχ ( Hτ ) is the sum of the triple-interface-coupled quasi-local mode energy and 

global mode energy for ground state (transition state). Using Eqs.17-18, we can 

rewrite Eq.1 as 

*
1 (G G E H H )τ χ

≠ ≠ ≠Δ = Δ + ΔΔ + −                   (19) 
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where 1 1 1E E E≠ ≠ΔΔ = Δ −Δ  

Assuming all the multi-body (“body” here refers to “interface”) interactions are 

harmonic, Hχ  has the form 

0 6 1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6 1 1 2 3 4 5 6( )H Hχ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ λ ωλ λ λ λ λ λ= + + + + + +    (20) 

The product i j kλ λ λ  refers to the effect of interaction among three adjacent interfaces, 

where iλ  is the harmonic factor (dimensionless) weighing the contribution of each 

interface to multi-interface interactions. The last term in the bracket in Eq. 20 

represents the global mode (related to all the six interfaces) interaction, where ω  is 

the transmission factor defining the relative quantity scale of the global mode energy. 

 characterizes the basic harmonic energy scale. 0H

Similarly, one can have 

0 6 1 2 1 2 3 2 3 4 3 4 5 4 5 6 5 6 1

1 2 3 4 5 6

[ (6,1 , 2) (1 , 2,3) (5,6,1 )

]

H Hτ η λ λ λ η λ λ λ λ λ λ λ λ λ λ λ λ η λ λ λ

ωλ λ λ λ λ λ

≠ ≠ ≠ ≠ ≠

≠

= + + + + +

+

≠

(21) 

iλ  is the same as that in Hχ , whereas 1λ
≠  stands for harmonic factor for the 

interface at transition state. Particularly, in contrast to ground state, the transition state 

of KaiC hexamer exhibits an asymmetry energy distribution due to the sole transition 

state interface. It directly influences the I1-involved triplet (3-interface) interaction 

energy. For simplicity, only when  is located at the center in the triplet can it bring 

about considerable change in the energy at the transition state, whereas the 

contributions of triplets with  on the side are almost equal to those of the triplets in 

the ground state. 

1I

1I

( , , )i j kη  is used to demonstrate this effect: , ( , , ) 1i j kη ≠ =

( , , ) /j ji j kη λ λ≠ ≠≈  and ( , , ) /k ki j kη λ λ≠ ≈ ≠ . Hence, 
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0 1 1 6 2 0 1 1 2 3 4 5 6( ) ( )H H H Hτ χ λ λ λ λ ω λ λ λ λ λ λ λ≠ ≠− = − + −           (22) 

Substituting Eq. 22 into Eq. 19, the final free energy of activation can be derived: 

  *
1 1 6 2 1 2 3 4 5(1 )G G E 6σ λ λ ωσ λ λ λ λ λ≠ ≠ ≠ ≠ ≠Δ = Δ + ΔΔ + +            (23) 

where . Because 1 0 1 1( ) /H Eσ λ λ≠ ≠= − ΔΔ 1
≠

1σ
≠  is linearly related to 1λ

≠ , we set 1σ
≠  

to be a fundamental parameter instead of 1λ
≠ , and reassign the name of 1σ

≠  as the 

harmonic factor at transition state. 

In the subunit representation, Eq. 23 can be rewritten in a more generalized form, 

for example, the free energy of activation of m00 phosphorylation at T432 is shown 

by: 

* 1
00Tp p p 00Tp 00 01 10 11 00Tp 00 01 10 11[1 ]i j k lG G E α β γ δσ λ λ λ λ ωσ λ λ λ λ≠ ≠ ≠ ≠ ≠ −Δ = Δ + ΔΔ + +      (24) 

where 00λ , 01λ , 10λ  and 11λ  are the ground state harmonic factors of m00, m01, m10 

and m11, respectively.  is the transition state harmonic factor for m00Tpσ ≠
00 

phosphorylation at T432. α , β , γ , δ  and , i j , ,  are non-negative 

integers under the constraints 

k l

1α ≥ , 6α β γ δ+ + + = , , 2i j k l+ + + =

, , ,i j k lα β γ< ≤ ≤ ≤ δ

−

. Additionally, the free energy of activation of m11 

dephosphorylation at S431 is  

* 1
11Sdp d d 11Sdp 00 01 10 11 11Sdp 00 01 10 11[1 ]i j k lG G E α β γ δσ μ μ μ μ ωσ μ μ μ μ≠ ≠ ≠ ≠ ≠Δ = Δ + ΔΔ + +   (25) 

where is the intrinsic free energy of activation for dephosphorylation which 

keeps constant in the dephosphorylation of KaiC and its complexes. 

*
dG≠Δ

dE≠ΔΔ  is the 

counterpart of pE≠ΔΔ , and each KaiC component (free KaiC and its complexes) has 

its own quantity of dE≠ΔΔ . Here, μ  and λ  satisfy the relationships 

. These relationships, though not a unique form, 00 00 01 01 10 10 11 11 1μ λ μ λ μ λ μ λ= = = =
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suggest that the same interface (or subunit) has opposite effects on phosphorylation 

and dephosphorylation. Note that in the term of triplet (3-interface) energy, the two 

λ ij (the second term in the bracket in Eq. 24) must correspond to two peripheral 

interfaces with the transition state interface in the center. Similarly, other forms of the 

free energy of activation can be obtained as above. 

There are totally 88 basic parameters, such as λ, σ and ω etc (see Table S5). The 

values of these parameters should not be chosen arbitrarily due to the intrinsic 

constraints. Further analyses of the parameter estimation can be found later in section 

1.2.5.  

 

1.2.2 Transformation between ST representation and subunit representation 

The transformation between the two representations is based on three ingredients. 

First, two subunits in subunit representation can undergo one same reaction in ST 

representation, e.g. both m00 and m01 are able to be phosphorylated at T432. Second, 

in , , ,Cα β γ δ there are various combinations of triplets including one certain transition 

interface (refer to Table S3). Third, one Ct
s  generally contains multiple , , ,Cα β γ δ , and 

this degeneracy is shown in detail in Table S2. 

For a given KaiC hexamer (e.g. 3m00+m01+m10+m11, where α=3, and β=γ=δ=1), 

the triplet can have several combinations, and each combination accompanies a 

statistical factor , , ,
, , ,

pq i j k lNα β γ δ  (p, q=0,1) whose value depends on α , β , γ , δ  and 

, i j , , . For instance, the combination factor of three-identical-monomer triplet 

(e.g. m

k l

00-m00-m00, the m00 marked bold is the reaction interface) is , while 
1

1 2
α α −⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
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that of three different monomers (e.g. m01-m11-m10) is 1 1 1
δ β γ⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠

. Details can be 

found in Table S3. The statistical factor is independent of the specific reaction and 

only determined by the combinations of four types of subunits in the triplet, for 

instance, 10 , , ,
, , ,

i j k lNα β γ δ  is the statistical factor for both m10 phosphorylation at S431 and 

its dephosphorylation at T432. The combination factor N thus establishes a natural 

statistical correlations between dual-site phosphorylation or/and dephosphorylation. 

  To obtain the rate constants in the whole KaiC reaction network, the free energies 

estimated above have to be transformed from subunit representation (Cα,β,γ,δ with 84 

elements) into ST representation (Ct 
s  with 49 elements). The transformation can bring 

about statistical errors because of the degeneracy in which several Cα,β,γ,δ correspond 

to one Ct 
s. The degree of degeneracy, assigned as W, ranges from 1 (no degeneracy) to 

4, and determined by (s, t) in Ct 
s. For instance,  only has one combinatorial form, 

where 

0
0C

6, 0, 0, 0α β γ δ= = = = . Yet for , there are four possible combinatorial 

forms, where  

3
3C

1 1 1 10, 3, 3, 0α β γ δ= = = = ; 

2 2 2 21, 2, 2, 1α β γ δ= = = = ; 

3 3 3 32, 1, 1, 2α β γ δ= = = = ; 

4 4 4 43, 0, 0, 3α β γ δ= = = = . 
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Fig. S2. Illustration for degeneration relationship between ST representation and subunit 
representation. Each node on the boundary loop of KaiC network has no degeneration, 
represented by one balloon. Nodes with degree of degeneration as 2, 3 and 4 are labeled by two, 
three and four balloons, respectively. The network shows a multi-shell structure according to the 
degrees of degeneration, shown by different colors. 
 

A general picture is shown in Fig. S2. Numerated the reaction loop in the network 

from outside to inside, the first loop (the boundary) in the network is not degenerate 

(W=1), W=2 in the second loop (such as the pathway along C1 
1  → C6 

1 ), W=3 in the 

third loop and W=4 only for the central node C3 
3 . For the nodes on the boundary of the 

network, there is no statistical error under the transformation between the two 

representations, whereas C3 
3  inevitably causes the largest statistical error. To reduce 

the errors, a statistical weight , , , 6!/( ! ! ! !
m m m m m m m mDα β γ δ )α β γ δ≡ is introduced using a 

mean-field method to the distribution of phosphates or subunits in each single KaiC 

hexamer, It calculates the fractions of the different Cα,β,γ,δ corresponding to one 

specific Ct 
s , where m varies from 1 to W (details in Table S2). Thus, the weighed 

average can be used to obtain the final free energies in the ST representation, shown 

as below. 
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00 , , , , , , 01 , , , , , ,
, , , , , , 00Tp , , , , , , 01Tp , , ,

, , ,
Tp 00 , , , 01 , , ,

, , , , , , , , ,
, , ,

[( )( ) ( )( )]
( , )

( )

m m m m m m m m m m m m m m m m m m m m

m m m m m m m m m m m m

i j k l i j k l i j k l i j k l

m i j k l
i j k l i j k l

i j k l

D N G N G
G s t

D N N

α β γ δ α β γ δ α β γ δ α β γ δ α β γ δ

α β γ δ α β γ δ α β γ δ

≠ ≠

≠

Δ + Δ
Δ =

+

∑ ∑

m
∑ ∑

(26) 

00 , , , , , , 10 , , , , , ,
, , , , , , 00Sp , , , , , , 10Sp , , ,

, , ,
Sp 00 , , , 10 , , ,

, , , , , , , , ,
, , ,

[( )( ) ( )( )]
( , )

( )

m m m m m m m m m m m m m m m m m m m m

m m m m m m m m m m m m

i j k l i j k l i j k l i j k l

m i j k l
i j k l i j k l

i j k l

D N G N G
G s t

D N N

α β γ δ α β γ δ α β γ δ α β γ δ α β γ δ

α β γ δ α β γ δ α β γ δ

≠ ≠

≠

Δ + Δ
Δ =

+

∑ ∑

m
∑ ∑

(27) 

10 , , , , , , 11 , , , , , ,
, , , , , , 10Tdp , , , , , , 11Tdp , , ,

, , ,
Tdp 10 , , , 11 , , ,

, , , , , , , , ,
, ,

[( )( ) ( )( )]
( , )

( )

m m m m m m m m m m m m m m m m m m m m

m m m m m m m m m m m m

i j k l i j k l i j k l i j k l

m i j k l
i j k l i j k l

i j

D N G N G
G s t

D N N

α β γ δ α β γ δ α β γ δ α β γ δ α β γ δ

α β γ δ α β γ δ α β γ δ

≠ ≠

≠

Δ + Δ
Δ =

+

∑ ∑

,m k l
∑ ∑

(28) 

01 , , , , , , 11 , , , , , ,
, , , , , , 01Sdp , , , , , , 11Sdp , , ,

, , ,
Sdp 01 , , , 11 , , ,

, , , , , , , , ,
, ,

[( )( ) ( )( )]
( , )

( )

m m m m m m m m m m m m m m m m m m m m

m m m m m m m m m m m m

i j k l i j k l i j k l i j k l

m i j k l
i j k l i j k l

i j

D N G N G
G s t

D N N

α β γ δ α β γ δ α β γ δ α β γ δ α β γ δ

α β γ δ α β γ δ α β γ δ

≠ ≠

≠

Δ + Δ
Δ =

+

∑ ∑

,m k l
∑ ∑

(29) 

 

1.2.3 Free energy for Kai protein interaction 

For simplicity, the spatial arrangements of KaiA, KaiB bound to KaiC hexamer 

are not considered. We assume the free energy differences between free KaiC and Kai 

complexes are related to the state of individual subunit and the global mode 

interactions, accordingly one has: 

, , , 00 01 10 11 00 01 10 11G G G G G h h h hα β γ δ
α β γ δ α β γ δΔ = Δ + Δ + Δ + Δ +Ψ          (30) 

where , ,00GΔ 01GΔ 10GΔ  and  represent contributions of four types of subunits, 

and the last term in Eq. 30 describes a global mode interaction for Kai protein binding, 

in which h

11GΔ

ij (i,j = 0,1) is the harmonic factor and Ψ  the basic global mode energy. 
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The corresponding binding energy in ST representation can be obtained by: 

, , , , , ,
ST

, , ,

m m m m m m m m

m m m m

m

m

D G
G

D

α β γ δ α β γ δ

α β γ δ

Δ
Δ =

∑
∑

                 (31) 

where , , ,m m m m
Gα β γ δΔ is expressed in Eq. 30. The dissociation constant is thus obtained 

by . In this work, KaiB-KaiC association-dissociation must obey the 

mass action law. We assign the rate constants of forward association as: 

, and let dissociation rate constants of KaiB-KaiC share the same 

value . Parameters in the free energy estimation are listed in Table S5.  

ST
B/

0
G k TK K e−Δ=

ST /
0

BG k Tkb kb eΔ=

0kdb kdb=

 

1.2.4 A simple coarse-grained normal mode analysis 

In this section, a simplified coarse-grained normal mode analysis is performed to 

support the hierarchical decomposition of free energy adopted in our model. This is a 

relative independent part of the free energy estimation. The derivations in this section 

are not used in the practical calculation of rate constants in our work, because they are 

so complicated and may involve more parameters. These derivations can be 

conditionally approximated to our equations for free energy mentioned above. The 

basic procedures are all based on the works of Hawkins and McLeish [5,6]. 

Normal mode analysis (NMA) is one of the powerful computation methods in 

exploring protein-protein interaction [7,8]. NMA decomposes complex motion into a 

sum of independent vibration modes, and uses the harmonic approximation to the 

potential U. Based on the assumption that the displacements of the atoms about their 

equilibrium positions are small, the harmonic approximation of Newton’s equation of 
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motion can be written as: 

= −Mx Kx                              (32) 

where  is the vector of the 3N particles’ displacements, N is the particle number. 

 is the inertial matrix, K  is the matrix defined by

x

M
2

1 3( ,..., )N
ij

i j

U x xK
x x

∂
=

∂ ∂
. The 

Hamiltonian of the system is given by 

1 1
2 2

H = +T -1 Tp M p x Kx                        (33) 

where  stands for the momentum vector.  p

The partition function is then 

B/( ) 1(2 ) (| || |)H k T d
BZ e k Tπ

+∞ − − −

−∞
= =∫ dxdp M K 1/ 2              (34) 

where d is the number of degrees of freedom in the model. 

Assuming isothermal changes and any change in the protein mass is negligible, the 

free energy is then 

B B
1ln ln | | constant
2

G k T Z k T= − = +K                (35) 

Thus,  is crucial to the analysis of the free energy in protein-protein interaction. 

Eqs. 32-35 are derived by Hawkins and McLeish [5,6]. 

K

In KaiC hexamer, the C terminal domain is responsible for phosphorylation, and it 

has a flexible conformation that may facilitate the intra- and inter-subunit interactions. 

The N terminal of KaiC has a more rigid structure that hardly tends to directly 

regulate the phosphorylation in the C terminal [9]. The significance of N terminal is to 

maintain the integrity and stability of the KaiC hexamer by interacting with ATP. For 

simplicity, we only consider the C terminal domain in the normal mode analysis for 

KaiC phosphorylation. A full model that contains both N and C terminal domains 
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would certainly give more insights into KaiC dynamics. For example, simulations in 

monomer shuffling definitely require the interplay between N and C terminal domains. 

Currently, we have difficulties in dealing with this large and complex KaiC system, so 

here we only study the simplified model containing only C terminal domain. A dual 

domain model is our pending work. 

 

2θθ
1

φ1

φ2

1

2

3

45

6 Ω
r

2R

 
Fig. S3. Illustration of 2D coarse-grained model of KaiC hexamer. The solid rods represent the six 
KaiC subunits. Two adjacent rods are connected by three springs at the center and two tips. The 
motion of the center of each rod is constrained in a circle orbit, and each rod can also spin about 
its own center. For instance, No.1 rod (deep blue) moves off its equilibrium position (solid grey 
rod) by rotating θ1 around Ω (the core of the system) and spinning φ1 with respect to the center of 
No.1 rod. Here, we assign that interface of rod 1 and 2 is in the transition state. The changes in 
spring constants are different among the six interfaces, indicated by their colors. 

A 2D coarse-grained model is built for normal mode analysis, as shown in Fig. S3. 

The rigid rods, each with the length of 2R, represent the six KaiC subunit (C terminal), 

and every two adjacent rods are connected with three different springs (using thin 

solid lines for simplicity). One spring links the centers of the two rods. The other two 

springs respectively tie the inner and outer ends of the two neighboring rods. Three 

concentric circles are helpful in the analysis. The radius of the inner circle is r, the 
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distance from the core of the system Ω to the nearest end of the rod. The movement of 

the center of the rod is constrained in the middle circle, and the degree of freedom of 

each rod is two, rotation around Ω and spin about its own center. Two independent 

variables are used to describe each rod (12 overall): iθ  the angle of the rod’s center 

move away from its original position (in the resting state), and iϕ  the spin angle, i 

ranging from 1 to 6; and we define the positive rotation direction is clockwise.  

We assign that phosphorylation (or dephosphorylation) taking place at the interface 

between rod 1 and rod 2 (red springs), the displacement of the middle spring is,  

M 1 2
1,2 2( )sin( ) ( )

6 2 2
L r R r Rθ θπ

Δ = + − + − +               (36) 

Assuming 1θ  and 2θ  are very small, we have, 

M
1,2 2 1

3 ( )(
2

L r R )θ θΔ = + −                       (37) 

Likewise, the displacements of inner and outer springs are as follows: 

I
1,2 2 1 2 1

O
1,2 2 1 2 1

3 3( ) (
2 2
3 3( ) (

2 2

L r R

L r R

)

)

θ θ ϕ ϕ

θ θ ϕ

Δ = − − −

Δ = − + −ϕ

              (38) 

The potential at the interface between rod 1 and rod 2 is then, 

I I 2 M M 2 O O 2
1,2 1,2 1,2 1,2 1,2 1,2 1,2

2 I M 2 O 2 I O 2 O I
1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2

1 1 1( ) ( ) ( )
2 2 2
3{[(1 ) (1 ) ] ( ) 2[(1 ) (1 ) ]
8

U k L k L k L

k k k x k k y k k x yφ φ φ φ

= Δ + Δ + Δ

= − + + + + + + + − − }

x r R

(39) 

where ,  and  are the spring constants of the inner, middle and outer 

springs at the interface; 

I
1,2k M

1,2k O
1,2k

1,2 2 1( )( )θ θ= + − 1,2 2 1( )y R, ϕ ϕ−  and R
R r

φ =
+

. =

For convenience, by defining , 1i i iU U+ = , I I
, 1i i ik k+ = , , , M M

, 1i i ik k+ = O O
, 1i i ik k+ = ,( 1)i i ix q+ =  
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and , the potential of the interface between the ith rod and (i+1)th rod can 

be written as  

,( 1) 6i i iy q+ = +

2 I M 2 O 2 I O 2 O I
6 6

3{[(1 ) (1 ) ] ( ) 2[(1 ) (1 ) ] }
8i i i i i i i i i iU k k k q k k q k kφ φ φ φ i iq q+ += − + + + + + + + − −

(40) 

The potential of the whole system is 
6

1
i

i
U

=

= U∑ . The matrix  is given 

by

K

2

mn
m n

UK
q q
∂

=
∂ ∂

, and then 

6 6

1 1

| | i
i i

a
= =

= + ib∏ ∏K                     (41) 

where 

2 I 2 2 O 2 2 O M I O9 [(1 ) ( ) (1 ) ( ) 2(1 ) ( )]
16

I
i i i i i i ia k k k k k kφ φ φ= − + + + + + + ik     (42) 

I9 [(1 ) (1 ) ]
16i ib kφ φ= − − + O 2

ik                 (43) 

According to Eq. 35, the free energy of activation of phosphorylation or 

dephosphorylation at one interface is 

6 6

1 1
B 6 6

1 1

6 66

B
1 1 1

1 | | 1ln ln
2 | | 2

1 ( ln ),
2

i i
i i

B

i i
i i

i i i

i i ii i i

G G G

a b
k T k T

a b

a b bk T
a a a

≠ ≠

≠ ≠
≠

= =

= =

≠ ≠

≠
= = =

Δ = −

+
= =

+

≈ + −

∏ ∏

∏ ∏

∑ ∏ ∏

K
K

           (44) 

provided that , and 
6 6

1 1
i i

i i

a b
= =

>>∏ ∏
6 6

1 1
i i

i i

a b≠ ≠

= =

>>∏ ∏ . 

Note that in  (or ) not all the spring constants vary greatly, only the ones (or 

one) related to the reaction interface change the most. Because we do not know the 

detailed relationship between the three spring constants in ground state and those in 

ia≠
ib≠
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transition state, two hypothetical correlations are made as, a , , 

where 

i i if a≠ = i i ib g b≠ =

if  and  are in general the functions of the corresponding spring constants. 

Thus, one can have 

ig

6

B
1

1 (
2

i

i i

bG k T P Q
a

≠

=

Δ = + )∏                    (45) 

where  

6

1

ln i
i

P
=

=∑ f                           (46) 

6

1

1 i

i i

gQ
f=

= − +∏                        (47) 

Simply, let 

1i
i

i

b
a
= −Λ                           (48) 

where  

I O M I O

I O 2 I O M I

4 ( )
[(1 ) (1 ) ] 4 ( )

i i i i i
i

i i i i i i

k k k k k
k k k k k kφ φ

+ +
Λ =

− − + + + + O
ik

        (49) 

Expanding , we finally have  
6

1

(1 )i
i=

− Λ∏

6

B
1

1 2 3 4 5 6

1 [ (1
2

)]

i i j i j k
i i j i j k

i j k l i j k l m
i j k l i j k l m

G k T P Q≠

= < < <

< < < < < < <

Δ = + − Λ + Λ Λ − Λ Λ Λ

+ Λ Λ Λ Λ − Λ Λ Λ Λ Λ +Λ Λ Λ Λ Λ Λ

∑ ∑ ∑

∑ ∑
      (50) 

The expression of free energy of activation in Eq. 50 contains n-interface mode 

interaction (as in the round bracket), where n=1 to 6. P and Q reflect the effects 

caused by the difference between transition state and ground state of KaiC hexamer 

(according to the definition of if and ), especially at the reaction interface. Because 

the differences between transition state and ground state at the other non-reaction 

ig
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interfaces are much less, P and Q mainly related to the changes in the 

reaction-interface, particularly for P. Thus, the term B
1 (
2

k T P Q+ ) in Eq. 50 

corresponds to *
p pG E≠ ≠Δ + ΔΔ in Eq. 24.  

If i if g= , then , hence the terms in the round bracket in Eq. 50 are vanished, 

and the free energy obtained can not bring about kinetic cooperativity in KaiC 

phosphorylation or dephosphorylation. The necessary condition of generating 

cooperativity is

0Q =

i if g≠ , which means the alterations of the three types of spring 

constants have to be different at transition state. Thus, it suggests that the kinetic 

cooperativity is inherent in the asymmetrical distribution of flexibility at each KaiC 

interface. According to Eq. 49, one can have 0 1i< Λ < . If i if g> , then , and 

in this condition, the terms for multi-interface interactions are also diminished. 

Therefore, we infer 

1 0Q− < <

i if g< (the alternation of is less than that of ), which 

suggests that at transition state the middle spring (taking effect in ) attenuates the 

effects of changes in the outer and inner springs. Probably, the middle spring is 

mainly responsible for keeping the integrity and stability of the KaiC hexamer. 

ia ib

ia

iΛ  in Eq. 49 characterizes the contribution of certain interface in the 

multi-interface interaction at ground state, and is a structure-based factor. The quantity 

of  is strictly restrained, otherwise the variation in the free energy for different 

phosphorylation state could be extremely large, which leads the Kai system unstable. 

The terms with  in Eq. 50 have both positive and negative components, which 

technically hinders the further analysis in the free energy changes. 

iΛ

iΛ

Actually, different time scales exist among the multi-interface interaction modes 
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represented in the round bracket in Eq. 50, the 1- or 2-interface interaction belongs to 

the fast modes, whereas the 4-, 5- and 6-interface interaction modes are relatively 

slow. In particular, the 3-interface (triplet) interaction may contain both fast and slow 

modes. Thus, we can split the 3-interface interaction mode into two parts, one for fast 

modes and one for slow modes, and make a coarse redistribution in the free energy. 

Two general levels of the free energy are defined as the quasi-local mode ( QLX ) and 

the global mode ( GX ), characterized by: 

6
1 2 3 4

QL 00 01 10 11
1

a a a a
i i j i j k

i i j i j k

X ε ηλ λ λ λ
= < < <

= − Λ + Λ Λ − Λ Λ Λ = −∑ ∑ ∑               (51) 

G

1 2 3 4
1 2 3 4 5 6 00 01 10 11

(1 )

         

i j k i j k l
i j k i j k l

b b b b
i j k l m

i j k l m

X ε

κλ λ λ λ

< < < < <

< < < <

= − − Λ Λ Λ + Λ Λ Λ Λ

− Λ Λ Λ Λ Λ +Λ Λ Λ Λ Λ Λ = −

∑ ∑

∑
         (52) 

We introduce the apparent interaction factor mnλ (m, n=0, 1, the same as in Eq. 24) 

to approximate the combined effects of iΛ . Eq. 51 and Eq. 52 stand for the quasi-local 

mode and the global mode, respectively, where 
4

1

3
ai

ai
=

=∑  and . 
4

1

6
bi

bi
=

=∑ η  and κ  

are the corresponding coefficients, both positive. ε  is the fraction of 3-interface 

interaction in the fast modes, while 1 ε−  in the slow mode, 0 1ε< < . 

Further analysis shows that the appropriate values of ε and Λ are down to narrow 

ranges. In such conditions, the free energy of activation in Eq. 50 can be safely 

approximated by the coarse hierarchical decomposition method as in Eq. 24. The 

further analysis can be found in section 1.2.5 below. 

 

1.2.5 Estimation of parameters 
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Our model contains a number of dimensions and parameters. There are 88 basic 

parameters, as mentioned in section 1.2.1. The values of these parameters must be 

chosen reasonably and logically so that they can be self-consistent, and also reproduce 

as many as possible the existing experimental data. To fulfill the latter requirement, a 

multi-objective optimization seems to be a more systematic method for the estimation 

of parameters. In fact, various experimental results are equally important objectives 

for the optimization, such as:  

(1) distribution of KaiC phosphoforms in steady state dynamics for binary 

interactions;  

(2) small effect of KaiB on the KaiC phosphorylation;  

(3) amplitude, period, and most importantly the waveform or phase distribution of 

overall KaiC phosphorylation cycle (the duration of phosphorylation phase is shorter 

than that of the dephosphorylation phase);  

(4) amplitude and phase differences between T432 (YT) and S431 (YS) 

phosphorylation;  

(5) diverse waveforms and phase relationships of hexameric KaiC phosphoforms;  

(6) temperature compensation;  

(7) relatively weak dependence of KaiA-KaiC complex formation on KaiC 

phosphorylation state;  

(8) relatively strong dependence of KaiB-KaiC binding on KaiC phosphorylation state, 

especially on S431 phosphorylation level, and so forth. 

The multi-objective approach in this case adds a great amount of complexity in the 
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global optimization process. In this work, we do not use this systematic method to 

determine the values of the parameters. Instead, we manually tune the parameters in 

two major steps. First, the 88 parameters are not fully independent, so a qualitative 

and semi-quantitative method is used to analyze the boundaries and constraints of the 

parameters. Second, the final values of the parameters are determined by fitting 

various experimental data, which is under the limit of the first step analysis. 

(i) Qualitative and semi-quantitative analysis 

There are many sets of kinetic constants in the model, yet they all follow a similar 

way of estimation. For example, in Eq. 24, 

* 1
00Tp p p 00Tp 00 01 10 11 00Tp 00 01 10 11[1 ]i j k lG G E α β γ δσ λ λ λ λ ωσ λ λ λ λ≠ ≠ ≠ ≠ ≠ −Δ = Δ + ΔΔ + +  

*
pG≠Δ (the elementary free energy of activation for an isolated phosphorylation site), is 

assumed to be 25 kBT, a value that falls in the range of typical free energy for general 

Thr/Ser phosphorylation. The other parts of the right hand side in Eq. 24 represent the 

free energy due to intra- and inter-subunit interactions in KaiC hexamer. According to 

the hierarchical decomposition of the free energy, we estimate that the value of the 

local mode energy pE≠ΔΔ  is around -12 kBT which approximately equals to the free 

energy released from hydrolysis of one ATP molecule. It means that besides one ATP 

being used as a substrate for phosphorylation, hydrolysis of at least one extra ATP is 

needed to drive the conformational change at the interface so that each KaiC hexamer 

can approach the transition state.  

The term 00Tp 00 01 10 11
i j k lσ λ λ λ λ≠  in the square bracket is the factor of the relative small 

part for the quasi-local mode energy, and it must be less than 1. 1
00Tp 00 01 10 11

α β γ δωσ λ λ λ λ≠ −  
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represents the smallest portion, the global mode free energy. ω  is the scaling factor 

of the smallest energy portion, thus it must satisfy 0 1ω< <  and 

00Tp 00 01 10 11
i j k lσ λ λ λ λ≠ > 1

00Tp 00 01 10 11
α β γ δωσ λ λ λ λ≠ − . The parameter λ  measures one certain 

monomer’s (m00, m01, m10 or m11) influence on KaiC phosphorylation as it participates 

in the intersubunit interaction. We assign the impact of m00 as a standard by 

setting 00 1λ = . It means that if S431 and T432 all are empty, m00 has basal effect on 

the phosphorylation of S431 or T432 in KaiC hexamer. Experiments show that T432 

positively affect phosphorylation, while S431 acts more like an attenuator [10,11]. 

The monomer m10, where T432 is phosphorylated (or occupied), it strengthens the 

phosphorylation rate in KaiC hexamer. If S431 is occupied (for m01), the 

phosphorylation rate in KaiC hexamer is attenuated. Therefore, we set 10 1λ ≥  (for 

m10) and 01 1λ ≤  (m01). The equal signs in the expressions represent the case in which 

the phosphorylation state at S431 or T432 has a very weak effect on regulating KaiC 

phosphorylation (or dephosphorylation). As to m11 where both T432 and S431 are 

occupied, we hypothesize that the effects of both sites may be partially 

counterbalanced. If T432 slightly prevails, then we have 00 11 10λ λ λ≤ ≤ , 

thus 01 00 11 10λ λ λ λ≤ ≤ ≤ . If S431 is favored, then 01 11 00λ λ λ≤ ≤ , and finally 

01 11 00 10λ λ λ λ≤ ≤ ≤ . σ ≠  represents the effect of the intra-subunit interaction on its 

own phosphorylation rate at the transition interface. The relationship of this 

parameter’s magnitude is designed similar to that of λ . The estimations of 

parameters for the free energies of dephosphorylation and Kai protein interactions run 

in the same vein. 
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Furthermore, the simple normal mode analysis in section 1.2.4 can also give a 

quantitative estimation of constraints for some parameters.  

Λ

ε
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Fig. S4. The constraints on the values of ε and Λ based on Eq. 53-54. The parameter values in the 
blue area of ε-Λ space fulfill the requirement of both XQL<0 and XG<0. The values of ε and Λ 
should be taken only within the blue area. 

According to Eq. 51 and Eq. 52, to roughly estimate the approximate quantities of 

ε ,  and iΛ mnλ , we can assume that iΛ  and mnλ  take certain fixed values, e.g. Λ  

and λ , considering  and iΛ mnλ  change very slightly (under restrict constraints). 

Then, Eq. 51 and Eq. 52 can be reduced to: 

2 3
QL 6 15 20X 3ε ηλ= − Λ + Λ − Λ = −                     (53) 

3 4 5 6
G 20(1 ) 15 6X 6ε κλ= − − Λ + Λ − Λ +Λ = −                (54) 

Considering the simplest situation, to keep QL 0X < , G 0X < (for temperature 

compensation) and QL G| | | |X X>  (hierarchical energy distribution), values of ε and Λ 

have a narrow range under the quantitative analysis. To satisfy the above requirements 

for both QLX  and GX , the values of ε and Λ have to be constrained in the blue area 

in Fig. S4. Additionally, the value of Λ need to be close to 1, otherwise the energy 

differences among KaiC phosphorylation states are too large, which is mainly due to 

the product of multiple Λ in Eq. 51-54. Therefore, we found a appropriate range for ε 
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and Λ, i.e. approximately, ~ 0.5ε , 0.8 1.5≤ Λ ≤ . Then, 2η κ is narrow down to a 

certain range. The quantity of λ  can be coordinated with the absolute value of η  

and , as well as P and Q to finally make the value of the full free energy reasonably. 

Because P and Q are restrained by the temperature compensation effect, the value of λ 

is in fact down to a narrow range as well, which set up a strict constraint for the 

parameter estimation. 

κ

(ii) Fitting the parameters to experimental data 

In fact, the qualitative and semi-quantitative estimations in section 1.2.1 only set 

some boundaries and constraints on the parameters, yet the actual values of the 

parameters need to be carefully calculated so that the final dynamic results of Kai 

oscillator can be consistent with a series of experiments. Besides the properties of 

KaiC phosphorylation oscillation, we use three additional aspects of experimental 

facts to fit the parameters.  
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Fig. S5. Steady state dynamics of monomeric KaiC phosphoforms (m01, m10 and m11). (A) KaiC 
phosphorylation in the presence of KaiA. (B) KaiC dephosphorylation in the absence (solid lines) 
and in the presence (dotted lines) of KaiB. The notion “total” in A and B denotes m01+m10+m11. 
 

(1) The distribution of monomeric KaiC phosphoforms (m01, m10, m11) at steady 

state under the binary interactions of KaiA and KaiC. According to the work by 

Nishiwaki et al. [12], when KaiC was incubated with KaiA for 8 hours, >90% of KaiC 
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were converted to phosphorylated forms. The fraction of m10, m01 and m11 are 46.6%, 

11.9% and 33%, respectively. The parameters in our model are designed to reproduce 

the similar result, as shown in Fig. S5A. 

(2) The dephosphorylation dynamics of highly phosphorylated KaiC where KaiA 

and KaiB are absent. The temporal profiles of free KaiC dephosphorylation are shown 

in Fig. S5B (solid lines), which can be compared with Ref. [1] and Ref. [11]. 

(3) The dephosphorylation patterns of KaiC in the presence of KaiB. There is no 

substantial difference between the profiles of KaiC dephosphorylation with and 

without KaiB. However, the two profiles are slightly different, as reported by Rust et 

al. [11] in their Fig. S2A. The profiles of KaiC dephosphorylation with KaiB in our 

model are just in the similar case, referring to the dotted lines in Fig. S5B. 

 

2. Additional results 

2.1 Functional differentiation between S431 and T432 

Our simulation results suggest that T432 is a major amplitude regulator, while S431 

the major phase regulator. Further, we provide a simple method to prove this 

argument. The strongest interaction between S431 and T432 is the intra-subunit 

interaction at the transition interface, so we simply modify the corresponding 

harmonic factors and check the result. First, we change the strength of phosphorylated 

T432 affecting S431 (both in phosphorylation and dephosphorylation states) by 

multiplying a factor fT to the parameters , , , 

and , where the notions in the bracket represent which KaiC 

10Sp (AC)σ ≠
10Sp (ABC)σ ≠

11Sdp (C)σ ≠

11Sdp (BC)σ ≠
11Sdp (ABC)σ ≠
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complexes the parameters belong to (refer to Table S5). As shown in Fig. S6A, the 

amplitude of the total phosphorylation changes remarkably. In the similar way, we 

check the result by changing the strength of the effect of phosphorylated S431 on 

T432. By multiplying a factor fS to the parameters , , 

,  and , we obtain the results as in Fig. S6B. The 

amplitude has slightly changed comparing to that in Fig. S6A, but the phase of the 

phosphorylation peak has shifted considerably. As f

01Tp (AC)σ ≠
01Tp (ABC)σ ≠

11Tdp (C)σ ≠
11Tdp (BC)σ ≠

11Tdp (ABC)σ ≠

S increases, the ratio of the 

duration of phosphorylation phase and that of dephosphorylation phase decreases 

from ~0.77 to ~0.68, while the ratio for changing fT varies only from ~0.73 to ~0.75.  
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Fig. S6. Simple demonstration for the functional differentiation of S431 and T432. (A) Changing 
the strength of the effect of T432 on S431 phosphorylation and dephosphorylation at the transition 
interface. The factor fT is multiplied to σ≠ 

10Sp(AC), σ≠ 
10Sp(ABC), σ≠ 

11Sdp(C), σ≠ 
11Sdp(BC), σ≠ 

11Sdp(ABC) and, 
where the notions in the bracket represent which the KaiC complexes the parameters belong to. (B) 
Changing the strength of the effect of S431 on T432 phosphorylation and dephosphorylation at the 
transition interface. The factor fS is the similar scaling factor as fT. 

 

2.2 Stochastic simulation of the Kai reaction network 

Stochastic simulation is performed based on the full Kai reaction network to 

specifically mimic the in vivo KaiC phosphorylation dynamic. Here, 

associations-dissociations of KaiA-KaiC and KaiA-KaiBC are described by general 
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forward and backward reactions rather than rapid equilibrium. The total molecule 

numbers of Kai proteins are chosen as: 2000 KaiA dimers, 6034 KaiB dimers and 

2000 KaiC hexamers. The effective volume of one single cyanobacterial cell is set to 

be 5.73×10-15 L. The stochastic simulation is performed using Gillespie algorithm 

[13]. Similar results are obtained as those in deterministic model, shown in Fig. S7.  
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Fig. S7. Stochastic simulation of the full model of Kai oscillator. (A) Circadian oscillations of Y 
(blue), YS (green) and YT (red), defined as in the deterministic model. (B) Oscillations of free KaiC 
(blue), KaiAC (green), KaiBC (red) and KaiABC (cyan). The total molecule number of KaiC 
hexamers is 2000. 

 

2.3 Diverse circadian patterns of KaiC phosphoforms 

Fig. S8 shows various temporal profiles of hexameric KaiC phosphoforms obtained 

by stochastic simulation. We have categorized the waveforms of KaiC into four 

groups (in main text), but the waveforms are actually quite variable, even for the same 

group. 
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Fig. S8. Diverse waveforms of hexameric KaiC phosphoforms. The result is obtained by 
stochastic simulation. 21 KaiC phosphoforms are shown: C0 

0 → C6 
0  (left column), C0 

1 → C6 
1  

(middle column) and C0 
2→ C6 

2  (right column). 

 

2.4 Temperature compensation in Kai system 

The wild-type Kai clock is extremely robust against the temperature fluctuation, 

with a Q10 factor ~1.1 or even less [14,15]. It suggests that a low apparent free energy 

of activation for phosphorylation or dephosphorylation at ambient temperature. The 

estimation shows that a relatively large enough local mode free energy (~12 kBT) 

considerably reduces the intrinsic free energy of activation (details in Table S5). A Q10 

factor of 1.06 is obtained in our model (Fig. S9A). In essence, the robust temperature 

compensation is inherent to the stability of the fundamental structure of KaiC hexamer. 

We further found that, to maintain strong robustness, the formation of KaiAC and 

KaiBC should take place spontaneously (ΔG<0), whereas the formation of KaiABC 
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requires extra energy supply (ΔG>0). 

Our model reproduces the self-temperature-compensation in phosphorylation and 

dephosphorylation [14], shown in Fig. S9B-C. This is so due to the low apparent free 

energy of activation. The local mode free energy mostly responsible for the integrity 

and stability of KaiC hexamer plays the main part in reducing the high intrinsic free 

energy of activation. 
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Fig. S9. Temperature compensation in Kai system. (A) Temperature compensation of the KaiC 
phosphorylation oscillation. From 25°C (green) to 35°C (red), the period decreases ~1.5 h. (A) In 
the absence of KaiB, KaiA stimulates KaiC phosphorylation at 25°C (green), 30°C (blue) and 
35°C (red). (B) Same temperature tests for dephosphorylation of KaiC with neither KaiA nor 
KaiB. 

 

2.5 Bifurcation diagrams for variations in concentration of KaiA and KaiB 

Variations in protein concentrations affect the Kai oscillator’s dynamic properties. 

As shown in Fig. S10A, a supercritical Hopf bifurcation occurs at  

with a period of 23.5 h (Fig. S10B).  (or  later mentioned) is the standard 

KaiA (or KaiB) concentration in ref [1]. The period tends to first increase then 

decrease gradually with the increase in the ratio of  till the oscillation 

+
T T[A] /[A] 0.52=

+
T[A] +

T[B]

+
T[A] /[A]T
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disappears at the second Hopf bifurcation point where  is ~1.9. The 

amplitude attains the maximum at , then decreases slowly up to the 

second Hopf point.  

+
T[A] /[A]T

T

+
T T[A] /[A] 1.0≈

For , the oscillation occurs when this ratio is approximately greater than 

0.32 (Fig. S10C). The amplitude and the period slightly decrease as  

increases (Fig. S10C and Fig. S10D). The sustained oscillation still holds true up to 

 where the period is ~21.1 h. The similar results can be found in 

previous experiments [1] and theoretical simulations [16]. The bifurcation analysis is 

performed with XPPAUT software package [17]. 
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Fig. S10. Dependence of oscillation amplitude and period on the total concentrations of KaiA and 
KaiB. (A) Phosphorylation amplitude varies with [A] 

T/[A]+ 
T , where [A]+ 

T  (or [B]+ 
T later mentioned) 

stands for the standard total concentration of KaiA (or KaiB). Two Hopf bifurcation points are 
found. Oscillation occurs within the range of 0.52 ≤ [A] 

T/[A]+ 
T  ≤ 1.9.  (B) Period dependence on 

[A] 
T/[A]+ 

T . (C) [B] 
T/[B]+ 

T  variation shows only one Hopf bifurcation point [B] 
T/[B]+ 

T =0.32. The 
amplitude of oscillation is slightly changed as [B] 

T/[B]+ 
T  changes in a wide range. (D) Period 

dependence on [B] 
T/[B]+ 

T . 

 

2.6 Dynamics under concerted changes in Kai protein concentrations 

The Fig. 7C and D in the main text have shown the robustness of the oscillator 
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against the concerted variations in Kai proteins’ concentrations. According to our 

simulations, the period decreases from 24 h to 21 h as the concerted protein 

concentrations increase from 1× to 5×, and the amplitude only changes slightly. So far, 

we are unable to fully simulate the results observed by Kageyama et al. [1], where the 

increase in concentrations has nearly no effect on the length of the period. The 

tendency of the period change in our Fig. 7C seems to be consistent with the work by 

Kageyama et al. [1], where they found that lowering the protein concentration 

lengthens the period of Kai oscillator. 

On the other hand, a more recent work by Rust et al. [11] showed an opposite 

tendency in which the period is shortened as the protein concentrations decrease (from 

4× to 0.5×, details see their Figure S8A [11]). However, the common point of the two 

works by Kageyama et al. and Rust et al. is that the period variation is quite small as 

the total Kai protein concentrations increase even several folds. 
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Fig. S11. KaiC phosphorylation under concerted changes in Kai protein concentrations. The 
concentrations used in the simulation are: 0.5×, 1×, 2×and 4× standard Kai protein concentrations. 

 

Particularly, we have adjusted our model (parameters see Table S4 and S5) and 
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obtained the same tendency of period variation (with protein concentrations) as the 

results shown by Rust et al. [11]. In the original model for mimicking the experiments 

by Kageyama et al., we set kb0 
0  = kb1 

0  = 0, i.e. the forward reactions of KaiB binding 

to free C0 
0  and C1 

0  (KaiC hexamer with one T432 phosphorylated) are not allowed, 

whereas we let free C1 
0  be able to bind KaiB and only leave kb0 

0  = 0 in the newly 

adjusted model. Based on this change, we tune the other parameters as slightly as 

possible so that it can mostly reproduce the results made by Rust et al. [11], and keep 

all our earlier simulation results valid. Fig. S11 shows the new result of dynamic 

robustness of Kai oscillator against changes in total protein concentrations. The 

periods of the four samples are 23.83 h (0.5×), 23.99 h (1×), 24.85 h (2×) and 24.92 h 

(4×), respectively.  

 

2.7 Synchronization of different phased Kai samples 

We performed several additional mixing simulations using samples at different 

phase points. Particularly, Fig. 7B (in the main text) reveals that approximately three 

situations could occur after mixing. Here, we explicitly reproduce these behaviors in 

Fig. S12. The mixing time point is set to be the zero time in Fig. S12. Two profiles 

rapidly enter the phosphorylation (red) and dephosphorylation (blue) phase as soon as 

the samples are mixed (note the initial slope of the profiles), respectively, while the 

third profile (black) changes its rate much slowly and finally enters the 

dephosphorylation phase. 
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Fig. S12. Perturbation of KaiC phosphorylation by mixing samples in different phases. Three 
cases of mixing are performed: rapid shift to phosphorylation phase (red), rapid shift to 
dephosphorylation phase (blue) and slowly synchrony into dephosphorylation phase. Ph (T) 
represents a sample with the phase T (hour) at mixing time. All the mixing times are set to be zero. 

 

2.8 Simulation of mixing Kai samples with non-standard concentrations 

We mixed two equal-amount Kai samples with non-standard concentrations, and 

keep the final mixture to be standard. The non-standard Kai systems are prepared by 

changing the standard concentration of either KaiA or KaiB. Specifically, we first set 

up two samples with 0.7× and 1.3× standard KaiA, respectively, leaving KaiB and 

KaiC standard. The two systems have different periods, ~26.42 h for 0.7× KaiA and 

~22.42 h for 1.3×. The simulation started with mixing the two samples at both their 

peaking points, and the mixing was performed every 12 hours. What we trace is the 

time span (starting from the mixing time) for the system to return to its normal 

oscillation state. Generally, it takes 1 ~ 2 days to return to the normal Kai oscillation 

state, as shown in Fig. S13A. The recovery time changes quasi-periodically with a 

period of ~ 1 week. To obtain an absolute periodic rhythm, the ratio of the two 

samples’ periods must be a rational number, i.e. it can be expressed as the quotient a/b 

of two positive integers. In fact, this relation may not be fully satisfied all the time. 

Even if it fulfills the requirement, the final period of recovery time could be too large 
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to observe because of two large primes a and b. It usually (if lucky) acts in a 

pseudo-periodic way shown in Fig. S13A.  
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Fig. S13. The recovery time as a function of mixing time of two non-standard Kai samples. (A) 
The concentrations of KaiA for the two samples are 0.7× and 1.3× standard KaiA, respectively, 
while those for KaiB and KaiC remains standard. (B) The concentrations of KaiB are 0.5× and 
1.5× standard KaiB for the two samples, respectively, while those for KaiA and KaiC remains 
standard. In both (A) and (B), the initial time of mixing is the peaking time for both samples. 
Parameter set used is the new one obtained in section 2.6. 

 

We performed the similar simulation with non-standard KaiB (Fig. S13B). Here, 

we use 0.5× (period: ~ 22.42 h) and 1.5× (period: ~ 24.77 h) KaiB samples (KaiA and 

KaiC keep standard). The profile of recovery time seems not to be periodic compared 

with that in the non-standard KaiA case. The period cannot be observed at least within 

~ 32 days, but a pseudo-periodic profile may be observable for a long time span. 

Based on the results analyzed above, we may guess that a population of 

cyanobacteria could make use of this mechanism to produce non-circadian rhythms 
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with period longer than a day (e.g. a week or a month), if the strict periodicity is not 

required. The biological significance of this effect is not clear at present. 

 

2.9 Reduced model and monomer shuffling 

KaiC reaction network exhibits asymmetry dynamic properties due to the 

differentiation of S431 and T432, thus a reduced model can approximately describe 

the full model dynamics. For the reduced reaction network, we remove the nodes with 

 in the full network. Using the same parameters in the full model, the period of 

KaiC phosphorylation in the reduced model is a little longer than that in the full 

model (period ~26 h). 

4s ≥

 

 
Fig. S14. Simulation of KaiC monomer shuffling. (A) Network for monomer shuffling based on 
the reduced model. Only nodes with  are assumed to be able to exchange monomers. The 
monomer shuffling reaction directions of some nodes are parallel to those of KaiC 
phosphorylation-dephosphorylation, while others are along the diagonal directions of a square 
element unit in the network. (B) Oscillatory KaiC phosphorylation with monomer shuffling in the 

3t ≥
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reduced model. The increase of the shuffling rate ks results in longer period and smaller amplitude 
in KaiC phosphorylation. 

Based on the reduced model, we performed the monomer shuffling simulation. 

Only the free KaiC hexamers with  are assumed to be able to lose and gain 

monomers. The basic rule of monomer shuffling is to exchange only one KaiC 

monomer at one time, not involving exchange of dimers or higher ordered oligomers. 

As drawn in Fig. S14A, 

3t ≥

Ct
s  can only become one of its nearest nodes after a single 

shuffling. Ct
s  has maximum eight nearest nodes, four lie in the phosphorylation- 

dephosphorylation direction and four at diagonal direction. In the phosphorylation- 

dephosphorylation direction, two types of shuffling can produce the same results.  

One shuffling contains two steps. First, one Ct
s  loses one monomer, say m00, and 

its probability is 00
/( )

m m m m

m m m m

m m m m m
m

st

m

D
L

D

α β γ δ

α β γ δ

α α β γ δ+ + +
=
∑

∑
. The other step is to receive 

one monomer from the pool that contains the four types of monomer contributed by 

all the other KaiC hexamers (as donors). For instance, the fraction of m10 in the pool 

can be described by 10
10

,
st

s t

R L=∑ , where s, t exclude the receiver hexamer. Therefore, 

the reaction flow for  is 00 10C m mt
s − + 00

10[C ]t
s st sk L R . Likewise, all the monomer 

shuffling process in Fig. S14A can be quantitatively calculated. We found that with 

the increase in the shuffle rate , the period of KaiC phosphorylation becomes longer 

but the amplitude declines slightly, as shown in Fig. S14B.  

sk

 

2.10 Dynamic phase shifts by transient variations in KaiA concentration 

We further explore the phase response curves of the in vitro Kai oscillator, using 
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the transient (4 hours) changes in KaiA concentrations as the stimulus pulses, i.e. 1/3×, 

2/3×, 1.5× and 3× standard amount of KaiA are applied during the pulse. The raw 

dynamics under the stimuli are shown in the following figures. 
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Fig. S15. KaiC phosphorylation dynamics perturbed by stimulus pulses of 1/3× standard KaiA 
concentration at different circadian time points. The black curves are the unperturbed dynamic 
profiles, while the blue curves are the profiles after stimulus pulses. The grey bar stands for one 
pulse with 4-hour duration. 
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Fig. S16. KaiC phosphorylation dynamics perturbed by stimulus pulses of 2/3× standard KaiA 
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concentration at different circadian time points. The black curves are the unperturbed dynamic 
profiles, while the blue curves are the profiles after stimulus pulses. The grey bar stands for one 
pulse with 4-hour duration. 
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Fig. S17. KaiC phosphorylation dynamics perturbed by stimulus pulses of 1.5× standard KaiA 
concentration at different circadian time points. The black curves are the unperturbed dynamic 
profiles, while the blue curves are the profiles after stimulus pulses. The grey bar stands for one 
pulse with 4-hour duration. 
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Fig. S18. KaiC phosphorylation dynamics perturbed by stimulus pulses of 3× standard KaiA 
concentration at different circadian time points. The black curves are the unperturbed dynamic 
profiles, while the blue curves are the profiles after stimulus pulses. The grey bar stands for one 
pulse with 4-hour duration. 
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