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1 Expression patterns of the IsO genes at E10.5 (ad main Fig-
ure 1)

The expression pattern shown in main Figures 1A and 1B was derived from various in situ hybridization
experiments, for a review see e.g. [5] and, in particular, Figure 1c therein. Further details can be found
in the primary research publications listed in Table 1 and in our IDGenes database.

Table 1: Primary research publications investigating the expression pattern shown in main Figure 1.
Gene PubmedID Author, year PubmedID Author, year

Otx2 11231064 Garda et al., 2001 1353865 Simeone et al., 1992
8101484 Simeone et al., 1993

Gbx2 11231064 Garda et al., 2001 9247335 Wassarman et al., 1997
Fgf8 7768185 Crossley and Martin, 1995 9056772 Lee et al., 1997
Wnt1 7577673 Rowitch and McMahon, 1995 2907320 Davis and Joyner, 1988

3594565 Wilkinson et al., 1987 8275860 Parr et al., 1993
En1 2907320 Davis and Joyner, 1988 7577673 Rowitch and McMahon, 1995
En2 2454212 Davis et al., 1988 2907320 Davis and Joyner, 1988
Pax2 10934015 Bouchard et al., 2000 1977575 Nornes et al., 1990

7577673 Rowitch and McMahon, 1995
Pax5 7577673 Rowitch and McMahon, 1995 1283313 Asano and Gruss, 1992

2 IDGenes database

Figure S1 shows a screenshot of the web interface and the relational database scheme of IDGenes
(http://www.helmholtz-muenchen.de/idgenes).

3 Minimization of Boolean functions using Karnaugh-Veitch
maps

Here we outline how minimal Boolean expressions for partially filled truth tables can be found by using
Karnaugh-Veitch (KV) maps. No rigorous mathematical explanations are given but the interested
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Figure S 1: A Screenshot of a Java applet embedded in the web interface of the IDGenes
database. An anatomical area can be selected by the buttons on the right side. In the picture,
‘mid hind brain boundary’ is chosen which corresponds to the red area in the mouse brain on the
left. The anatomical brain components are hierarchically ordered, i.e. after selection of a specific area
an enlarged 3D model of the structure is shown. An example is displayed for the MHB (and the selected
floor plate area, red) within the box in the upper left-hand corner. B Relational database scheme of
IDGenes. The entity relationship diagram was generated using the software Together from Borland.
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reader is referred to [1, 3].
Each of our Boolean update functions Bx, x ∈ G, can be represented as a truth table with 25 = 32

entries. Condition (4) from the main text allows to specify at most six entries in each truth table. The
remaining entries are indetermined ‘don’t cares’. These truth tables are now represented as KV maps,
see Figure S2. Actually, these maps are three dimensional cubes but for better presentability the cube
was sliced up and the two layers put next to each other. Moreover, the green as well as the blue sides
are identified, so each ‘slice’ is actually a torus. By inspection, we now determine a covering of the
true-entries by rectangular boxes of size 2, 4, 8, 16 or 32 such that

• No false-entry is contained in any of the boxes.

• All true-entries are contained in at least one box.

• The boxes have maximum size.

• The number of boxes is minimal.

Note that there may be multiple coverings satisfying these conditions. In Figure S2 all suitable coverings
are shown. From each box in these coverings a conjunction term (AND gate) is built, where variables
appearing both, negated and non-negated within the box, are omitted. These conjunction terms are
linked by disjunction (OR gate) and give a minimal so-called disjunctive normal form (DNF) of the
Boolean expression. If one wants to find the dual minimal conjunctive normal form (CNF), i.e. a series
of disjunction terms linked by conjunction, one applies the above procedure to the inverted Boolean
function. From the minimal DNF of the inverted Boolean function a minimal CNF of the original
Boolean function can then be obtained by inversion and application of the De Morgan’s laws.

We illustrate this using Bfgf as a showcase. Two coverings satisfying the above mentioned conditions
could be found, each consisting of only one box, cf. the dashed and solid red boxes in Figure S2B. Let
us choose the first (dashed lines). Here all variables except otx and wnt appear both, negated as well
as non-negated. Consequently, the conjunction term for this box is NOT (otx) AND wnt. Similarly,
the other expressions from equation (1) in the main text can be deduced from the maps in Figure S2.

4 Parameter choice for model simulations (ad main Figures 4
and 5)

When simulating our continuous models we do not intend to fit quantitative time-courses of concentra-
tion levels. Rather we want to check if our models exhibit certain (more qualitative) behaviors, like the
stable maintenance of a specific expression pattern. In Figures 4 and 5 of the main text the following
ad-hoc parameters were used:

ODE model Hill exponents n = 5; thresholds (affinities) k = 0.1; life-times τx = 1.

PDE model For x ∈
{
fgf ext,wnt ext

}
: production rates αx = 1; decay rates γx = 0.8; diffusion rates

δx = 0.01. For all other species: decay and production rates αx = γx = 1; diffusion rates δx = 0.
Note that, in the case of positive diffusion rates δx, we assume a lower decay rate of protein than of
mRNA. This way, the model’s qualitative behavior does not change within a ±10%-strip around
the ad-hoc parameter values.

For the simulation of the LOF experiments the production rate of the knocked-out gene was set to zero.

5 Sampling of initial conditions and classification of steady
states (ad main Figure 4)

This section refers to Figure 4 of the main text. For details on main Figure 7, see supplement section 8.
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Figure S2: KV maps for A Otx2 , B Gbx2 and C En. 0: false, 1: true, X: ‘don’t cares’. In each map
the blue and green sides are identified. Red boxes indicate the maximal coverings. Similar maps for
Gbx2 , Wnt1 and Pax can be obtained by flipping Gbx2 and Otx2 in A, Fgf8 and Wnt1 in B and En
and Pax in C, respectively.
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Table 2: Boundary conditions for the PDE model.
left (u = 0) right (u = 1)

otx 1 0
gbx 0 1
fgf 0 0

fgf ext 0 0
wnt 0 0

wnt ext 0 0
en 0 0
pax 0 0

The multi-compartment ODE model was solved numerically with MATLAB ode15s (http://www.
mathworks.com), a variable order multi-step solver. The required .m file is provided in Dataset S1. In
the computational experiment shown in main Figure 4, the initial conditions in each run were determined
by eight values: the levels of Otx2 and Gbx2 on the anterior as well as posterior side of the boundary
and the levels of Fgf8 , Wnt1 , En and Pax , whose initial expression domains were all set to the four
central compartments. The initial conditions of otx and gbx were sampled uniformly from [0, 1]. The
initial conditions of the other variables were sampled such that the minimum of their 10-logarithms is
uniformly distributed on [−4, 0]. To this end, we first sampled this minimum, let us call it a, uniformly
from [−4, 0]. Then we randomly chose a variable and assigned it the initial condition 10a. Finally, the
10-logarithms of the three remaining variables were sampled uniformly from (a, 0]. Each simulation was
run until the maximum distance beween a variable’s values at two successive time-points dropped below
10−6. In the last expression pattern a variable was considered to be expressed at a certain position if
its value was above its Hill threshold k. In the 105 runs only the six (discretized) steady states shown
in main Figure 4A were reached.

6 Simulations of the PDE model (ad main Figure 5)

The PDE model was solved numerically with MATLAB pdepe, a solver for initial-boundary value
problems for parabolic-elliptic PDEs in 1-D. The spatial coordinate u was normalized to the unit interval.
Table 2 gives the boundary conditions.

In the wild-type simulation, initial conditions at t = 0 were chosen to mimic the fuzzy expression
patterns at E8.5 (cf. upper Figure 5A of the main text). They were obtained by specifying the boundaries
as well as the maximum of the expression profile of each species and interpolating these points by cubic
splines. In detail, the points were (first coordinate = spatial position u, second coordinate = initial
concentration):

otx : (0, 1), (0.5, 0), (1, 0)

gbx : (0, 0), (0.5, 0), (1, 1)

fgf : (0, 0), (0.45, 0), (0.625, 1), (0.8, 0), (1, 0)

fgf ext: (0, 0), (0.45, 0), (0.625, 1), (0.8, 0), (1, 0)

wnt : (0, 0), (0.2, 0), (0.375, 1), (0.55, 0), (1, 0)

wnt ext: (0, 0), (0.2, 0), (0.375, 1), (0.55, 0), (1, 0)

en: (0, 0), (0.25, 0), (0.425, 1), (0.6, 0), (1, 0)

pax : (0, 0), (0.3, 0), (0.475, 1), (0.65, 0), (1, 0)
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For the simulation of the different LOF experiments, the initial condition of the wild-type simulation
was used and the expression of the knocked-out gene was deleted. Also the production rate of this gene
was set to zero.

In the limit t→∞ a discontinuity at the MHB (u = 0.5) arises in our simulations. Therefore, a fine
grid of evaluation points around u = 0.5 is necessary to guarantee numeric stability. All files needed for
the integration using MATLAB pdepe are contained in the archive Dataset S2.

7 Simulations of further LOF experiments

Figure S3 shows simulations of Fgf8−/−, En−/− and Pax−/− mutants.

8 Parameter analysis of the ODE model (ad main Figure 7)

Here we give technical details and provide additional information on the robustness analysis shown in
Figure 7 of the main text. First, we analyze the Otx2–Gbx2 switch. Consider a mutual inhibition
modeled as

ẋ1 =
kn
1

xn
2 + kn

1

− x1

ẋ2 =
kn
2

xn
1 + kn

2

− x2 .

(1)

For n > 1 three steady states are possible: The two stable steady states x1 high/x2 low (color coded
red in the following), x2 high/x1 low (color coded blue) and an unstable steady state where x1 and x2

are expressed at medium levels (color coded magenta). The latter is irrelevant for biological systems,
since minimal fluctuations will drive the system away from this state and into either of the two stable
steady states. We now study how the sizes of the basins of attraction vary under parameter changes.
To this end, we fix k2 = 0.1 and vary k1 = i/1000, i = 1, 2, . . . , 1000. For each parameter configuration
we evaluate the model starting at the points of the regular grid with cell size 0.1 until convergence.
We count the points leading to the red, blue and magenta steady states and use these numbers as
measures for the size of the basins of attraction. The results are displayed in Figure S4. Note that we
have a total of 121 grid points. For k1 = 0.1, i.e. for symmetrical parameters, the red and blue basins
of attraction are equally large. Here, for identical initial conditions the system converges towards the
unstable magenta steady state. In all other simulations the unstable steady state is not reached as
no grid point is located in its one dimensional basin of attraction. For k1 6= 0.1 the switch becomes
unbalanced and for k1 � 0.1 or k1 � 0.1 it exhibits an almost monostable behavior. This analysis
indicates that for a functional switch the two parameters k1 and k2 need to be at least of the same
magnitude.

After this preliminary analysis, we investigated the influence of the parameters on the ODE model
of the IsO network. 3 · 105 simulations of the ODE model were run until convergence (threshold 10−9).
For better statistics, the number of runs was increased from 105 (as in main Figure 4) to 3 · 105 in
order to account for the additional degrees of freedom in the sampling process. For the two threshold
parameters describing the mutual inhibition of Otx2 and Gbx2 three different sampling schemes were
used. For the remaining parameters, each n was sampled uniformly from [2, 10], each log10(k) uniformly
from [−3, 0] and each τ uniformly from [0.5, 10]. Similar ranges were used in previous studies [4, 2].
In main Figure 7A the two switch thresholds are fixed at their ad-hoc values from section 4. In main
Figure 7B, their 10-logarithms are sampled uniformly from [−0.9,−1.1], i.e. from a ±10%-strip around
their ad-hoc values. In main Figure 7C they are sampled as randomly as all other threshold parameters.

The initial conditions were sampled essentially as described in section 5. They are again determined
by eight values: the levels of Otx2 and Gbx2 on the anterior as well as posterior side of the boundary and
the levels of Fgf8 , Wnt1 , En and Pax , whose initial expression domains were all set to the four central
compartments. The initial concentrations of Otx2 and Gbx2 were again sampled from [0, 1]. The initial
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Figure S3: Simulations of a A Fgf8−/−, B En−/− and C Pax−/− mutant using the PDE model. In
lack of quantitative data ad-hoc parameters were used, see supplement section 4. As in the main text a
relation of 1 somite per every 5 time units is assumed and gene expression domains are shown at time
points t = 1, 9, 21, 51, 101, 126.
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Figure S4: Basins of attraction of the mutual inhibition switch (1). Parameters n = 5 and k2 = 0.1
are fixed, and k2 = i/1000, i = 1, 2, . . . , 1000 varies. For each configuration model (1) was evaluated
until convergence (threshold 10−6) starting at the points of the regular grid with cell size 0.1 as shown
in the three insets. The number of points leading to the x1 high/x2 low (x2 high/x1 low) steady state
is shown in red (blue). For k1 = 0.1, the 11 points on the x1(0) = x2(0) diagonal lead to an unstable
steady state shown in magenta. The three insets show the model’s phase planes for k1 = 0.05, 0.1, 0.2.
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Figure S5: Simulation of the PDE model for different diffusion constants δfgf and δwnt. Other parameters
are set to their ad-hoc values from section 4. Shown are the expression patterns of the IsO genes at
time-point t = 156, which corresponds to approximately 35 somites (E10.5). With increasing δfgf and
δwnt the length of the diffusion domains of Fgf8 and Wnt1, respectively, increases. Due to the mutual
positive regulation of Fgf8 and Wnt1 this entails a broadening of the expression domains of Wnt1 and
Fgf8 , respectively.

conditions of Fgf8 , Wnt1 , En and Pax were sampled such that the minimum of their 10-logarithms is
uniform on [−6, 0]. For this the same sampling scheme as in section 5 was used. Note that the range
of these initial conditions was adapted from [10−4, 1] (as in main Figure 4) to [10−6, 1] as we no longer
have all k = 0.1 but 10−3 ≤ k ≤ 1.

The discretization of the steady states is critical. Given a parameter configuration, we determined
for each species the minimal as well as the maximal threshold k of its out-going interactions. We define
that a species is ‘expressed’ if its value is above the maximal k and ‘not expressed’ if its value is below
the minimal k. Hence, a species is expressed if it is fully active within the network and not expressed
if it is completely inactive. This classification scheme cannot be applied to values between the minimal
and maximal k. As any classification of such values into binary on-off categories is arbitrary and given
that such values occurred in only 5.0% of all simulations we decided to simply ignore these runs. In the
remaining runs, again only the six discretized steady states shown in main Figure 4A were reached.

9 Parameter and robustness analysis of the PDE model

Figure S5 shows the effect of varying diffusion constants δfgf and δwnt.
In order to investigate the effect of perturbed initial conditions, 100 initial conditions were sampled

as follows: As in section 6, we define the initial condition as a spline interpolation of points. For each
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gene the boundary conditions (the points with spatial coordinates u = 0 and u = 1) are chosen as
in section 6. The coordinates of the interior points specifying the expression domains are uniformly
sampled from a ±10%-strip around the values used in section 6. Thus we obtained 100 perturbations of
the initial conditions from section 6. For each of them the PDE model was simulated until convergence
using the ad-hoc parameters. For each resulting steady state we first detected the position b of the Otx2–
Gbx2 interface. Over the 100 runs b varied between 0.44 and 0.61. Hence the initial conditions have
a crucial effect on the position of the MHB along the anterior-posterior axis of the neural plate/tube.
Subsequently, the steady states were compared to the steady state obtained for the unperturbed initial
conditions from section 6. Both steady states were aligned at the Otx2–Gbx2 interface and the integral
over the absolute difference was numerically computed for each variable. In 99 out of the 100 runs none
of these integrals was larger than 0.10. Only in one run a change of the qualitative behavior of the
model could be observed. Here the expression of Fgf8 , Wnt1 , En and Pax was lost over time.
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