
A High-Throughput Screening Approach to Discovering Good Forms of
Biologically-Inspired Visual Representation.

Nicolas Pinto, David Doukhan, James J. DiCarlo, David D. Cox

Text S2: Technical Details of the

Computational Framework

The high-throughput search described in this paper takes advantage of
multiple levels of parallelism, from coarse to fine-grained. Roughly speaking,
fine-grained parallelism is exploited by allocating one core (of which modern
graphics hardware have many; and their number is exponentially growing
over the years) to one or more virtual neurons, while coarse-scale parallelism
is achieved by allocating one model instantiation to each of many multi-core
pools (i.e. CPUs, Cell Processors, GPUs). Because we evaluated thousands
of model instantiations, it was straightforward to spread these evaluations
across a cluster of GPU-enabled nodes, with the throughput of each node
maximized by taking full advantage of fine-grained parallelism.

In practice, as a general rule in modern high-performance computing, the
level of speed-up that is achievable depends more fundamentally on the ability
to bring relevant memory fetches to the parallel arithmetic processing units,
than on the number of these units per se. For this reason, stream processing
architectures contain special mechanisms for explicit manipulation of fast
local caches (e.g. the Local Stores on the Cell processor and Shared Memory
on NVIDIA GPUs). Importantly for maximizing the usage of the parallel
resources in these processors, some of the largest computational bottlenecks
present in our model class (e.g. filtering operations), lend themselves to the
usage of such caches by loading small tiles of data into local caches. More
broadly, because each layer of each model maintains a notion of x-y space,
and because most of the operations operate over spatially local regions (e.g.
normalization occurs within a spatially-restricted neighborhood), our coarse-
to-fine-grain parallelism can be exploited throughout a large portion of our
model implementation.

The use of commodity graphics hardware has drastically reduced the cost

1



of a scientific exploration of this scale (see Table 1 and Supplemental Figure
S1), but writing reliable code for these multi-core platforms can be a demand-
ing task. On one hand, scientific software can be difficult to handle because
of constantly changing requirements. On the other hand, these architectures
are advancing at a very rapid pace and we have experienced three different
paradigms in three years (i.e. programming GPUs with graphics primitives
in 2006, programming the PlayStation 3 using low-level Cell intrinsics in 2007
and programming GPUs with compute primitives in 2008; see below). To
overcome these difficulties, we combined careful engineering, high-level lan-
guages (such as Python1 and its numerous scientific bindings2,3) and template
meta-programming techniques. Inspired by automatically-tuned scientific li-
braries such as the Automatically Tuned Linear Algebra Software (ATLAS4)
or the Fastest Fourier Transform in the West library (FFTW5), we found
that empirical optimization through automatic run-time code generation was
a useful way to abstract the low-level details away from the end-user. In-
tegrating these heterogeneous technologies in our large-scale computational
software shows us that it is possible to achieve a favorable balance between
ease-of-use, ease-of-programming and peak computing speed.

An extensive description on how we used these techniques is well beyond
the scope of this paper, however, we highlight a few important high-level
points here:

• Meta-programming and combining high-level with low-level languages

In our implementation, each core operation (see Text S1) has two levels
of abstraction. The high-level abstraction is designed for the user and
is written in a high-level language (we used Python). The low-level
abstraction is designed to achieve maximum throughput on heteroge-
neous hardware and as a consequence it must be able to handle low-level
languages and “close to the metal” code optimization techniques (e.g.
involving assembly) if needed. The interface between the two abstrac-
tions is a templating engine (we used Cheetah6) that is responsible for
dynamically generating optimized low-level code at runtime, many spe-
cialized versions of which are compiled and auto-tuned prior to running
a given model simulation. Such an approach is equivalent to “just-in-
time” (JIT7) compilation techniques used elsewhere for portability and

1http://www.python.org
2http://numpy.scipy.org
3http://www.scipy.org
4http://www.netlib.org/atlas
5http://www.fftw.org
6http://www.cheetahtemplate.org
7http://en.wikipedia.org/wiki/Just-in-time_compilation

2

http://www.python.org
http://numpy.scipy.org
http://www.scipy.org
http://www.netlib.org/atlas
http://www.fftw.org
http://www.cheetahtemplate.org
http://en.wikipedia.org/wiki/Just-in-time_compilation


dynamic specialization8.

The primary goal of the developer is to come up with various opti-
mization strategies that instrumentalize low-level code and manipulate
it from a high-level language (using templates). These strategies may
involve loop unrolling9, software pipelining10, register pressure11, com-
munication and computation load distribution (aka “latency hiding”),
to name just a few.

Producing a large number of hand-tuned implementations, correspond-
ing to optimized lower-level code across a range of implementations
would be impractically time-consuming. A meta-programming ap-
proach circumvents this difficulty by producing code that can itself
generate a variety of specialized compiled versions under parametric
control. This large number of candidate implementations of the meta-
program can be empirically tested to find which is the fatest (see Auto-
tuning below)

It is important to note that the high-level language must be mature and
general enough to allow a seamless interaction between all the compo-
nents of the system, from the distributed job system and its database
to its template meta-programming capabilities and its interaction with
other (low-level) languages. The Python programming language was a
natural choice as it is often referred as a versatile “glue” language (i.e.
used to connect software components of different levels together), and
allows quick prototyping and experimentation.

While MATLAB, by itself, does not support easy meta-programming on
GPUs, commercial companions to MATLAB like AccelerEyes’s Jacket12

could potentially enable some of the gains necessary for our approach.
However, such solutions typically do not necessarily achieve the full
performance of stream processing hardware 13.

• Auto-tuning

To auto-tune our instrumentalized (i.e. templated) code, we used the
simplest approach: random search on a coarse grid. Using this sim-
ple approach, we achieved comfortable speed-ups, and thus we did not

8http://psyco.sourceforge.net
9http://en.wikipedia.org/wiki/Loop_unwinding

10http://en.wikipedia.org/wiki/Software_pipelining
11http://en.wikipedia.org/wiki/Register_allocation
12http://www.accelereyes.com
13http://www.nvidia.com/object/matlab_acceleration.html

3

http://psyco.sourceforge.net
http://en.wikipedia.org/wiki/Loop_unwinding
http://en.wikipedia.org/wiki/Software_pipelining
http://en.wikipedia.org/wiki/Register_allocation
http://www.accelereyes.com
http://www.nvidia.com/object/matlab_acceleration.html


explore more complex schemes before launching the experiments pre-
sented in this study. In the future, we plan to investigate the use of
machine learning techniques to auto-tune the code, an approach re-
cently undertaken by IBM’s Milepost GCC14.

• Use of specialized extensions and libraries

Our PlayStation 3 implementation was created using tools provided
in IBM’s Cell SDK (Software Development Kit15) were mature and
comprehensive (e.g. availability of a simulator, profiler, debugger, etc.),
interfaced using ctypes16 from the Python standard library. These tools
allow one to program primarily in C (or in a language that can bind to
an underlying C implementation), but require specialized knowledge of
the architecture of the Cell processor in order to achieve high levels of
performance.

Our NVIDIA GPU implementation was created using NVIDIA’s CUDA
programming model (an augmented superset of C), managed via Py-
CUDA 17 and python-cuda 18, Python libraries that bind to the un-
derlying NVIDIA CUDA libraries. Meta programs were created using
the Cheeath template library (see above) that would emit specialized
CUDA code which was compiled on the fly and run on the GPU.

While the efforts described here relied on vendor-specific software de-
velopment kits (which arguably imposes a significant barrier-to-entry
for developer scientists), efforts are underway in industry to provide a
unified programming model and tool set for developing applications of
the sort presented here. In particular, the lack of general-purpose pro-
gramming standard for heteogeneous systems was recently addressed
through the introduction of OpenCL19 (Open Computing Language)
by the Khronos Group. We anticipate future work to utilize these
tools will enable us to target more platforms, and will ease the cost of
incorporating ideas of the sort presented here into the work of other
groups.

14http://www.milepost.eu
15http://www.ibm.com/developerworks/power/cell
16http://docs.python.org/library/ctypes.html
17http://mathema.tician.de/software/pycuda
18http://github.com/npinto/python-cuda
19http://www.khronos.org/opencl

4

http://www.milepost.eu
http://www.ibm.com/developerworks/power/cell
http://docs.python.org/library/ctypes.html
http://mathema.tician.de/software/pycuda
http://github.com/npinto/python-cuda
http://www.khronos.org/opencl

