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Text S3: First-Order Analyses of Model Parameters

and Behavior

The results presented in the main text show that the five best model instantiations
found by a screening procedure are well-suited to a variety of object recognition tasks, but
they do not speak to how these models achieve their performance. While fully answering
this question is beyond the scope of the present paper, as a first step in understanding
model performance, we asked a series of first-order questions about the relationship be-
tween model parameters and performance. These analyses are in no way intended to be
definitive; rather, they primarily suggest directions and challenges for future experiments.

First, we asked which (if any) of the parameters were predictive of model performance,
using simple linear regression. While complex interdependencies between parameters can
(and almost certainly do) exist, linear regression provides a first-order tool to identify pa-
rameters that are especially important to performance. Significance values for individual
parameters are shown in a histogram in Figure S9. A handful of parameters were found
to be significantly predictive of model performance. To determine if a particular category
of model parameters were more important than any other, we divided the parameters into
three groups: linear filter parameters, normalization/activation/pooling nonlinear param-
eters, and learning parameters. We found that normalization/activation/pooling param-
eters shared a trend toward being over-represented in the set of significantly predictive
parameters, but that the distribution of significant parameters from each of these three
categories were not significantly different than would be predicted by chance (p = 0.338;
Fisher’s exact test).

Another reasonable first-order question to ask is whether the top models are somehow
similar to one another. In this context, similarity might be assessed along a number of
axes. One possibility is to simply compare the parameter values for the best models, to see
if they share more parameter settings in common with each other than one would expect
by chance. To do this, an expanded binary parameter vector was first created in which
each parameter value combination was included as a binary element (e.g. if a parameter
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ω could take of values 3, 5, and 7, three binary values [ω = 3], [ω = 5], and [ω = 7]
were generated for each model). The Hamming distance was then computed between
these vectors to assess the similarity between models. To determine whether the top five
models were more similar to each other than to the population of models, we computed
the median pairwise Hamming distance among the top five, and among randomly chosen
sets of five models (N = 100, 000) taken from the remaining (non-top-five) models (Figure
S10a). By this measure, the median distance between the top five trended toward higher
than expected similarity but was not found to be significantly different from the median
distance over the full population of models (p = 0.136; permutation test). Thus, at least
by this simple measure, we could find no evidence that the best models were any more
similar to each other than would be expected by chance. Attempts to compare parameter
vector using `1 and `2 distances also failed to find any increased similarity amongst the
best models, though these analyses are intrinsically difficult to interpret, as it is unclear
how to scale one parameter relative to another.

Another approach to comparing models is to compare the structure of the space of
their outputs. That is, for a given set of images, do the best models somehow transform
these images in a similar way? To explore this issue, we transformed 600 images from the
screening set for each model, and then formed the similarity (Euclidean distance) matrix
for the set of transformed image vectors. We then computed the Euclidean distance
between the upper triangular part of these symmetric matrices (similar to the Frobenius
distance) to assess their similarity. As before, we computed distributions of pairwise
distances within the top five models (N =

(
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)
= 10), and in the random sampling from

the full population (N = 10, 000) in order to test whether the top five models were more
similar to each other than would be expected from random draws of five models (Figure
S10b and S10c). We found that the similarity matrices of the top five models tended to be
more similar to each other, but that this effect was not significant (p = 0.082; permutation
test).
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