
Text S1

Model Details

Deriving Autocovariance Functions and Stationary Probability Densities

Damped Model.

Starting from Equations 3, Methods:

dx
dt

= −λx−ωy + ξx

dy
dt

= ωx− λy + ξy, (S1)

with 〈ξ (t)〉 = 0, and 〈ξ (t + τ) ξ (t)〉 = 2Dδ (τ), we briefly outline how Equation 4, Methods is
obtained. We denote Fourier transforms by capital letters, i.e.

∫ ∞
−∞ x (t) e−iΩtdt = X (Ω). Fourier

transforming Equations S1, solving for Y, and taking the conjugate square yields the power spectral
density YY∗ = |Y|2 :

|Y|2 =
2D
(
λ2 + ω2 + Ω2)

(λ2 + ω2 −Ω2)2 + 4λ2Ω2
. (S2)

The Wiener-Khinchin theorem states that the autocovariance function C (τ) = 〈y (t + τ) y (t)〉 is ob-
tained as the Fourier transform of the power spectral density, i.e.

C (τ) =
1

2π

∫ ∞

−∞
|Y|2 eiΩτdΩ.

Assuming τ ≥ 0, the classical method1 to calculate integrals of this type is to integrate along a closed
curve consisting of a line on the real axis between −R and R, and a semi-circle in the complex plane
stretching from R back to −R via iR. Jordan’s lemma dictates that as R → ∞, the contribution to the
curve integral from the semi-circle goes to zero since |Y|2 goes to zero, and the curve integral becomes
equivalent to the Fourier transform we are seeking. Jordan’s lemma and the residue theorem together
dictate that 1

2π

∫ ∞
−∞ |Y|

2 eiΩτdΩ = i ∑k Res
(
|Y|2 eiΩτ , Ωk

)
, where Res ( f (z) , zk) is the residue of a

function f (z) of a complex variable z, at the upper half-plane simple pole zk of f (z). Residues at
simple poles can be calculated according to the formula Res ( f (z) , zk) = limz→zk (z− zk) f (z). In
our case, the poles are located where the denominator of the right hand side of Equation S2 vanishes,
and we have two simple poles in the upper half-plane; Ω1 = ω + iλ and Ω2 = −ω + iλ. With this
information, it is a matter of simple algebra to derive the final result

C (τ) =
D
λ

e−λτ cos ωτ.

The stationary (time-independent, i.e. approached as t → ∞) probability density P0 (x, y) for the
damped model is a two-dimensional Gaussian [1] which can be written in polar coordinates (r2 =
x2 + y2);

P0 (x, y) =
λ

2πD
exp

(
− λ

2D
r2
)

.

1The procedure is outlined in most elementary textbooks in mathematical physics.
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The most probable radius (such that max
r

P0 (r)) is the radius yielding the maximum of the closed line

integral along the angular direction: max
r

∫ 2π
0 exp

(
−λr2/ (2D)

)
rdϕ, which is attained for r =

√
D/λ.

This was used to define the amplitude of the noise-driven damped oscillator.

Self-sustained Model.

Here, we will take a different route to the autocovariance function, with an intermediate stop at the
stationary probability density, which, as outlined in the main text, can be unimodal or form a crater
ridge. We start from Equations 5, Methods:

dr
dt

= −λ (r− A) + ξr

dϕ

dt
= ω + ξϕ, (S3)

with 〈ξr (t)〉 =
〈
ξϕ (t)

〉
= 0, 〈ξr (t + τ) ξr (t)〉 = 2Drδ (τ) and

〈
ξϕ (t + τ) ξϕ (t)

〉
= 2Dϕδ (τ). This

particularly simple model is due to Feistel [2], but essentially the theoretical framework for noisy
oscillators flows from the works of Stratonovich [3]. Note that the radial variable r is described by
the Ornstein-Uhlenbeck process and is allowed to attain arbitrarily negative values (i.e. it is not the
radius per se; this is always positive). Equations S3 are equivalent to the following Fokker-Planck
equation for the probability density P

(
A, ϕ, t

)
for A = r− A and ϕ:

∂P
∂t

=
∂

∂A

(
λAP + Dr

∂P
∂A

)
+

∂

∂ϕ

(
−ωP + Dϕ

∂P
∂ϕ

)
. (S4)

The solution to this Fokker-Planck equation, under the initial condition P
(

A, ϕ, 0
)

=
δ
(

A− A0
)

δ (ϕ− ϕ0) is [1]:

P
(

A, ϕ, t|A0, ϕ0, 0
)

=
1

2π

(
2
λ

DrDϕt
(

1− e−2λt
))−1/2

× exp

(
− λ

2Dr

(
A− A0e−λt)2

1− e−2λt − (ϕ−ωt− ϕ0)
2

4Dϕt

)
. (S5)

As t → ∞, P approaches the stationary probability density P0, at which P no longer changes over
time, i.e. ∂P

∂t = 0. For the radial variable A, this means that its stationary probability density is
Gaussian:

P0 (A
)

=
(

2π
Dr

λ

)−1/2
exp

(
−λA2

2Dr

)
,

with a variance σ2
r of Dr/λ. On the other hand, the phase variable ϕ undergoes a random walk

around an increasing mean ωt + ϕ0. Its probability density is Gaussian with variance 2Dϕt, i.e.

P (ϕ, t|ϕ0, 0) =
(
4πDϕt

)−1/2 exp
(
− (ϕ−ωt−ϕ0)

2

4Dϕt

)
. As t → ∞, this density approaches a uniform

density for the angular variable ϕ.
The stationary probability density P0 is visualized in Figure S1. The probability density can ei-

ther form a “crater ridge” (panel S1A), which represents the limit cycle oscillation, or have a single
maximum, a “mountain top” (panel S1B). Which of these two possibilities is realized by P0 depends
on the coefficient of variation (CV) of the amplitude A. The amplitude and its standard deviation
σr =

√
Dr/λ (Figure S1C) together determine the CV, viz. CV = σr/A. When CV < 1, the probability

density function forms a crater ridge, when CV ≥ 1, it forms a mountain top. This follows from
elementary properties of the Gaussian probability density. The probability density along a section
that cuts through the center of the limit cycle oscillation (red dashed line in Figure S1C) is the sum
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of the two Gaussians centered at the respective two points where r = A (panels S1D–S1F). The bor-
der between uni- and bimodality for such a sum of two Gaussians lies exactly where their standard
deviations intersect (the standard deviations are marked with black dots in panels S1D–S1F).

We proceed to calculate the autocovariance function C (τ) = 〈y (t + τ) y (t)〉, where y =(
A + A

)
sin ϕ, according to

C (τ) =
∫∫

yy′P
(
y, τ|y′, 0

)
P0 (y′) dydy′ =

= lim
t′→∞

1
4π2

(
4

λ2 D2
r D2

ϕτt′
(

1− e−2λτ
) (

1− e−2λt′
))−1/2 ∫∫∫∫ (

A + A
)

sin ϕ
(

A′ + A
)

sin ϕ′

× exp

− λ

2Dr

(
A− A′e−λτ

)2

1− e−2λτ
− (ϕ−ωτ − ϕ′)2

4Dϕτ


× exp

− λ

2Dr

(
A′ − A0e−λt′

)2

1− e−2λt′ − (ϕ′ −ωt′ − ϕ0)
2

4Dϕt′

 dAdϕdA′dϕ′ =

=
1
2

(
A2 +

Dr

λ
e−λτ

)
e−Dϕτ cos ωτ.

Amplitude and Entrainment Phase of the Forced Oscillator

The amplitude and entrainment phase of the damped oscillator with a sinusoidal forcing term u,

dx
dt

= −λx−ωy + u

dy
dt

= ωx− λy,

is conveniently derived within the framework of control theory [4] whereby the equation system is
Fourier transformed:

X = G (U −ωY)
Y = FX,

where G = 1/ (iΩ + λ) and F = ω/ (iΩ + λ). In terms of block diagrams, this is depicted in Figure
S2. Solving for Y yields Y = UT with

T =
FG

1 + ωFG
.

A fundamental result is that if u = A cos Ωt, then y will be a phase-shifted cosine function with a
modified amplitude: y = |T| A cos (Ωt + arg T). Evaluating |T| and arg (T) yields Equation 8 and 9
of the Methods section in the main text.

Simulating the Model Solutions

Solutions for the Langevin stochastic differential equations were realized numerically using the Euler-
Maruyama method. Transients of 400 hours were simulated and discarded, and time-series of the
same length as the experimental data were then simulated and resampled to match the sampling
rates of the experimental studies (30 min for the Liu et al. [5] study and 20 min for the Yamaguchi
et al. [6] study).
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Approximating the Frequency Response Curve for the Self-sustained Model

The damped oscillator model without noise can be transformed to radial variables:

dr
dt

= −λr

dϕ

dt
= ω,

which is equivalent to the self-sustained model with A = 0. When applying a forcing F cos Ωt to
the x-direction of the self-sustained model with A > 0 (the Methods section of the main text), forced
trajectories will for sufficiently high F lie entirely outside the limit cycle, and the self-sustained model
(and its frequency response curve) will behave exactly like the damped model. For smaller F, this
becomes an approximation. We made a rough estimation of F from experimental data (see below)
and as seen in Figure 6B of the main text, the approximation is reasonable for simulations where the
estimated value of F was used.

Estimation of Model Parameters from Bioluminescence Data

Estimating the Autocovariance Function and Dealing with Measurement Noise

If we assume that measurement noise enters the bioluminescence signal y additively, we can write

y (t) = s (t) + r (t) ,

where s (t) is the bioluminescence signal plus the mean of the measurement noise, and r (t) are fluc-
tuations of the measurement noise around the mean of the signal. We approximate these as Gaussian
white noise around the noise mean, with 〈r (t + τ) r (t)〉 = σ2δ (k). Here, δ is a delta function and σ2

is the variance of fluctuations. What we search is each estimated autocovariance Ck (with the time lag
of k sampling intervals) for the biological signal;

Ck =
1

N − k

N−k

∑
i=1

(si −m0) (si+k −mk) ,

where N is the number of samples in the time-series, and where the means are estimated by
m0 = 1

N−k ∑N−k
i=1 yi, and mk = 1

N−k ∑N−k
i=1 yi+k (these means also include the mean of the measurement

noise). Dividing the sums by N − k ensures that the estimates are unbiased. The biased estimator
(obtained by instead always dividing by N) is often encountered in the literature. However, it is in
our case dangerous to use this, since it provides a bad estimate for short correlation times, which play
a prominent part in our study.

We must however first estimate an autocovariance C̃k that includes measurement noise, from the
measured signals yk:

C̃k =
1

N − k

N−k

∑
i=1

(yi −m0) (yi+k −mk) ,

It is easy to show that this estimation includes the measurement noise variance,

C̃k = Ck + σ2δ (k) .

What we have learned here is that the autocovariance C̃k estimated from the measured signals con-
tains a rapidly declining superimposed peak centered at lag zero, which stems from the measurement
noise. This is, of course, under the assumption that the measurement noise has a correlation time
short enough to approximate its autocorrelation as a delta function.

4



Fitting of Theoretical Autocovariances to Estimated Autocovariances

To each bioluminescence time series, we fit a second-degree polynomial in the least squares sense,
which we then subtracted from the time series. The time series were then mean centered. After this
procedure, we define them to be detrended. Autocovariances were calculated from the detrended
time series as outlined above. We used only those 40 percent of the estimated autocovariances repre-
senting the shortest time lags, since, as mentioned, estimates of autocovariances for larger time lags
become poor. We fit Equation 4 (Methods) to the cut estimated autocovariance functions with the
ansatz

C (τ) = ae−λτ cos ωτ. (S6)
From the fits, the three parameters D, λ, and ω are obtained, since a = D/λ. For the fits, we used
a subspace trust-region optimization algorithm, as implemented in the lsqcurvefit subroutine of
the MATLAB Statistical Toolbox (The MathWorks, Inc., V6.2 (R2008a)). In order to avoid fitting to
measurement noise (see above), we fixed the autocovariance to exactly match Equation S6 for the time
lag τ = 6Ts, where Ts is the sampling rate, for the fibroblasts of the Liu et al. [5] study. This choice was
made via eyeballing of the calculated autocovariances. This yielded estimates of measurement noise
standard deviations σ ranging from 0.13 to 1.2 photons per 30 minutes. To validate this, we estimated
the camera noise from images taken every 30 minutes over 24 hours, in the absence of a biological
sample and with settings identical to those used for the experiments reported in the Liu et al. [5]
paper, and obtained a measurement noise standard deviation of 1.05 photons per 30 minutes. For the
neurons of the Yamaguchi et al. [6] study, the time lag τ = Ts was fixed. The zero time lag was fixed
for the autocovariances of the neurons in the Liu et al. [5] study, since there were no noticeable very
rapidly decreasing peaks. This is because these neurons gave rise to a very strong bioluminescence
signal, drowning the measurement noise.

We found that the most robust fitting method was to fix autocovariances at the timepoints given
above, and to use the optimization subroutine to fit the other two parameters (λ and ω), although fit-
ting all three parameters globally produced very similar results. Initial guesses were obtained by first
smoothing the estimated autocovariances via a low-pass filter, taking logarithms of the absolute val-
ues, then obtaining peaks via standard peak-picking. Initial guesses for damping rates were obtained
by linear ordinary least-squares fitting of the logarithms of the peak magnitudes. Initial guesses for
frequencies were directly obtained from the distances between the peaks.

The fit of the self-sustained model, Equation 6 (Methods) requires the ansatz

C (τ) =
(

ae−Dϕτ + be−(Dϕ+λ)τ
)

cos ωτ. (S7)

After fitting, the remaining parameters of the model are retrieved as: A =
√

2a and Dr = 2λb. Fur-
thermore, the coefficient of variation around the oscillation amplitude, CV = σr/A =

(√
Dr/λ

)
/A,

can be retrieved as CV =
√

b/a. In contrast to the fitting of the damped model, the fitting of Equation
S7 is a notoriously ill-conditioned problem [7, 8], since it involves fitting the sum of two exponentials.
However, as validated below, we were able to obtain good results by obtaining initial guesses using
the following classical “graphical” heuristic [8]:

1. Smooth the estimated autocovariances via a low-pass filter, take absolute values, then obtain
peaks via simple peak-picking (the starting guess for the frequency is directly obtainable from
the distance between the peaks).

2. Fit a straight line in the least squares sense to the logarithm of the peaks except the first one; this
estimates the slope of the tail and hence the exponent of the exponential with slower decay, as
well as a.

3. Subtract this exponential from the peaks, and fit another straight line to the logarithm of the
rest. We now have the starting guess for, a, b, and the two exponents.

As for the fitting of the damped model, we then used the lsqcurvefit subroutine of the MATLAB
Statistical Toolbox to fit the parameters, using the starting guesses obtained by the graphical method.
Equation S7 was fixed to estimated autocovariances as outlined above for the damped model, reduc-
ing the number of parameters to fit to four.
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Assessing the Fidelity of the Fits

We classified fits as being successful fits when meeting two criteria. First, the MATLAB lsqcurvefit

subroutine should return an exit flag that asserts a successful fit. Second, the fitted period should be
less than 50 hours. This second criterion was introduced since it makes little sense to fit an oscillator
model to very slow oscillations given the length of the time-series at our disposal. We therefore
excluded cells estimated to have such long “non-circadian” oscillation periods from further analysis.
The percentages of successful fits for each cell type are listed in Table S1.

For each successfully fitted cell, we made 1000 simulations of the damped and self-sustained
model, in each case using the fitted parameters. The simulations were made to exactly match the
sampling rate and length of the experimental time-series. To the autocovariances calculated from
each simulated time-series, we fit the relevant analytical autocovariance formula. The fits of the an-
sätze S6 and S7 to the autocovariances estimated from the simulated time-series allow us to gauge
how reliable our fitting procedure is, given the sampling rate and length of the experimental data,
since we in this case know the true parameter values hiding behind the simulation results. In Figure
S3, the three parameters of the damped model are plotted on the abscissas, while on the ordinates,
medians and error bars representing 25th and 75th percentiles of the fits to the 1000 simulations are
given. For graphical reasons, we plot only 30 of the WT SCN neurons, which were chosen as to obtain
a good spread in the noise intensity D. Specifically, neurons were sorted according to the estimated
D value, and every third neuron was picked from the sorted series. The 30 centermost neurons in this
sequence were plotted, so that a good spread was obtained, while ignoring extreme outliers. Quality
of fits was thus ignored when picking the neurons. The agreement is good for all three parameters.
The five parameters of the self-sustained model, together with the coefficient of variation (CV) of the
amplitude (a compound parameter of the parameters λ, DA, and A), are given in Figure S4. The WT
SCN neurons were sorted according to DA and 30 were picked for plotting independent of quality of
fit, as described above. The agreement is good for all parameters, except for the phase noise intensity
Dϕ. This parameter represents the slowly decaying part of the autocovariance, and as mentioned,
estimates of the autocovariance are poor for big time lags. However, this particular parameter plays
no major role in our further analysis.

Statistical Test of the Models

The 1000 simulations and autocovariance fits made for each cell fit and model can also be exploited
to test whether the respective model is reasonable at all. We here drew upon ideas outlined e.g. by
Hall and Wilson [9]. The rationale is that since the simulated time series truly are generated by their
respective model, the fitting to the analytical formulas for the autocovariance are as good as they
can get, given the sampling rate and the length of the time series. For a model sufficiently far off
the mark from the experimentally observed dynamics, the analytical autocovariance function would
always be a better fit to the autocovariances of the model simulations, than to the autocovariances of
the experimental data.

We reject the model if more than 95% of the 1000 simulations produced better fits than the experi-
mental data. As a measure for the quality of fit, we used the normalized root mean square deviation
(nRMSD):

nRMSD =

√
1
N ∑k ε2

k
1
N ∑k

∣∣C̃k
∣∣ ,

where we have an autocovariance of N time lags to fit, and where εk = C̃k − Ck is the absolute error
between the estimated and fitted analytical autocovariances at time lag τk. The results for each cell
type are listed in Table S1.

Measuring the Heterogeneity of Cell Populations

To quantify the heterogeneity of the WT population and of each mutant population of the study
of Liu et al. [5], we measured the scatter in λ, ω, and the normalized amplitude for the damped
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model. For the self-sustained model, the scatter in λ, ω, the normalized amplitude, and amplitude CV
(σr/A) were measured. Except for ω, logarithms were taken, which brought the probability densities
of the observables closer to a Gaussian shape (see Figure 3 and 4 of the main text). We used the
generalized standard deviation (GSD) as a measure of scatter, which is defined as the square root of
the determinant of the covariance matrix of the three (damped model) and four (self-sustained model)
observables, respectively. Fibroblasts and SCN neurons were lumped together, since they clustered
together in parameter space. The results are summarized in Table S2.

Estimating Amplitudes and the Strength of the Entrainment Signal from Experi-
mental Data

For Figure 3 of the main text, oscillation amplitudes for the noise-driven damped model were esti-
mated as the most probable radius, i.e. as

√
D/λ.

For Figure 6B of the main text, we entrained the self-sustained model, and calculated gain G as
the entrained amplitude Aent divided by the amplitude F of the forcing signal. In order to choose
a realistic forcing amplitude F, we made estimations of the differences in amplitude between disso-
ciated Cry2−/− neurons and synchronized Cry2−/− neurons in SCN slice preparations from the Liu
et al. [5] study. Amplitudes for dissociated neurons were estimated from the fits to the self-sustained
model as A, giving a median value of 14 for the amplitude. Amplitudes from slice data are harder
to estimate, since the neurons are relatively densely packed in intact slices. Thus, scattering from
adjacent neurons contributes to the bioluminescence of a given region of interest (ROI). To estimate a
background for each neuron, we defined another region just outside the ROI that did not contain any
well-defined bright neurons. Then, we calculated new time series for those neurons with the back-
ground levels subtracted. Fitting the self-sustained model to this data gave an amplitude median of
46, i.e. about three times higher than for dissociated neurons. Because of this, we made the conser-
vative estimate that the amplitudes of slice neurons are on average at least twice those of dissociated
neurons. For Figure 6B of the main text, we then used the approximate frequency response curve
of the self-sustained model for the chosen neuron to calculate the theoretical value of F to entrain
the neuron up to the twofold higher amplitude at the oscillation period Ωsync of the synchronized
Cry2−/− slice (Ωsync ≈ 29 h):

F = 2A/
∣∣T (Ωsync

)∣∣ ,

yielding F ≈ 14.
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Figure Captions

Figure S1

The probability density function of the self-sustained model. Whether the density function forms
a “crater ridge” (panel A) or is unimodal (panel B) is determined by the coefficient of variation (CV)
of the radial variable around the oscillator amplitude A (panel C). The CV is defined as CV = σ/A,
where σ is the standard deviation σ of the radial variable around A. Along a section through the
density function, illustrated by the red dashed line in panel C, the density function is the sum of two
Gaussians (panel D). The density function is in this case bimodal, since the Gaussians overlap by less
than one standard deviation (black dots), i.e. CV < 1. The rotation of this density along the angular
direction gives rise to a crater ridge as in panel A. However, if CV ≥ 1, the sum of the two Gaussians
is unimodal (panels E and F), and the probability density function is also unimodal, as in panel B.

Figure S2

Block diagram of the forced damped oscillator. Block diagrams of classical control theory [4] are
a useful way to visualize linear dynamical systems. The variable x receives input from the forcing
(u = F cos Ωt) and negative feedback (−ωy) from the variable y. The variable y receives input from
variable x. The blocks G and F represent the differential operators for x and y, respectively.

Figure S3

Validation of the fitting procedure. The damped oscillator. For each cell, 1000 simulations of the
damped model with parameters fitted to experimental time series, were made. On the abscissas, the
parameters used for the simulations are given, and on the ordinates, the parameters estimated by
fits to the 1000 autocovariances estimated from the simulated time series are given (median together
with upper and lower quartiles). Ideally, the estimates would all lie at the red lines of identity, but
due to the finite length of the time series (same as for the experimental data), and the approximate
nature of simulations and optimization algorithms, deviations occur. To avoid complete cluttering,
fits for selected WT cells are shown. Selections were made automatically to achieve a good spread of
the parameters in the graphs, without regard to quality of fits. Scales are log-log for D and λ, linear
for ω.

Figure S4

Validation of the fitting procedure. The self-sustained oscillator. For each cell, 1000 simulations
of the self-sustained model with parameters fitted to experimental time series, were made. On the
abscissas, the parameters used for the simulations are given, and on the ordinates, the parameters
estimated by fits to the 1000 autocovariances estimated from the simulated time series are given (me-
dian together with upper and lower quartiles). To avoid complete cluttering, fits for selected WT cells
are shown. Estimates are accurate for all parameters, except Dϕ, which is particularly hard to esti-
mate, since it represents the slow time scale of Equation 6 (Methods). Autocovariance estimates for
big time lags are necessarily poorer than for smaller lags. For Dϕ, 17 out of 30 data points are shown.
The 13 points excluded were for estimates from experimental data for which Dϕ < 10−5, for which,
not unexpectedly, the results for the simulated data were more or less random. Finally, estimates for
the CV = σ/A are given, which is a compound parameter estimated from the ansatz Equation S7,
CV =

√
b/a. Scales are log-log for all parameters except ω, for which the scale is linear.
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