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Supplemental material S1: Equivalent reformulation as MILP 
Recall that the ILP proposed is:    
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Relaxation of Z  

  We will argue that relaxing the Z  variables from binary to continuous gives an 
exact reformulation. It suffices to show that constraints (3)-(8) together with 

snen
X

{0,1}  and rn
y {0,1}  imply rnen

Z
{0,1} . 

 

Theorem 1  Replacing rnen
Z

{0,1}  by rnen
Z

[0,1]  is an exact reformulation, in the 
sense that any feasible point in the new program is also feasible in the original program.  

 Note that Theorem 1 is a special case of Theorem 2. Nevertheless it is given 
separately, because it does not require the assumption of acyclical graphs. Moreover, its 
proof is much simpler, and is used in the proof of Theorem 2. 

 

Proof. Take any snen
X

{0,1} , rn
y {0,1}  and rnen

Z
[0,1]  that satisfies the 

constraints of (1)-(11). Take any rni ,1,=   and any enk ,1,=  . We consider two 

cases depending on the value of k
iy .   

    1.  0=k
iy . From (3) we directly obtain 0k

iz  and therefore 0=k
iz .  

    2.  1=k
iy . We consider two subcases:   

        - If for some ij R  we have 0=k
jx  (a reagent is missing), then 0k

iz  

from (4) and therefore 0=k
iz . Similarly, if for some ij I  we have 1=k

jx  (an inhibitor 

is present), then from (5) 0k
iz  and therefore 0=k

iz .  
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        - If for all ij R  we have 1=k
jx  (all reagents present) and for all ij I  we 

have 0=k
jx  (all inhibitors absent), then from (6) we obtain 1k

iz  and therefore 

1=k
iz .  

  

 Since the choice of i  and k  was arbitrary we have shown rnen
Z

{0,1} .  
 
 

Relaxation of non-input k
jx  

  For the case that no loops are present in the pathway, we will argue that we 
can also use [0,1]k

jx  for all species but the input species. In typical pathways the 

majority of species are noninput species. The formal definition of input species is  
 
Definition 1 (Input species) Species j  that are not products in any reaction, i.e., 

 irn

is jnj PT 1=:},{1,    are termed input species.  
 
 

Theorem 2  Suppose that the pathway proposed contains no loops. In (1)-(11) 
replacing rnen

Z
{0,1}  by rnen

Z
[0,1]  and {0,1}k

jx  by [0,1]k
jx  for all Tj  (for 

all non-input species) is an exact reformulation, in the sense that any feasible point in 
the new program is also feasible in the original program.  

 Note that input species cannot be relaxed, for otherwise {0,1}iz  would not be 
ensured. The proof idea is that because the potential pathway form a directed graph, 
we can proceed from the “top” to the “bottom”. In doing so we establish that both k

jx  

and k
iz  are forced to be integer. 

 

Proof. Take any snen
X

[0,1] , rn
y {0,1}  and rnen

Z
[0,1]  that satisfies the 

constraints of (1)-(11) and that also satisfies {0,1}k
jx , for all Tj  (all input species 

are binary). 
In the proof of Theorem 2 we have established that if for a given reaction i  and 

experiment k , we have {0,1}k
jx  for all iij IR   (all reagents and inhibitors are 

binary), then we also obtain {0,1}k
iz . 

Take },{1, enk   (an arbitrary experiment) and },{1, snj   (an arbitrary 

species). We will argue that if {0,1}k
iz  for all ir jni P :},{1,  (for all reactions for 

which the species is a product) then {0,1}k
jy . There are essentially two cases: 

    1.  If for some ir jni P :},{1,  we have 1=k
iz  then by (7) we obtain 

1k
jx  and therefore 1=k

jx .  

    2.  If for all ir jni P :},{1,  we have 0=k
iz  then by (8) we obtain 0k

jx  

and therefore 0=k
jx .  
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It is clear that in the absence of loops the above two arguments propagate 

through the pathway. From an arbitrary species },{1, snj   we can traverse the 
graph in reverse direction and reach the input species in a finite number of steps (a 
reverse path). Due to the absence of loops, each species depends only on the species 
which are “further up” in the pathway. 

 
 

 
 
 
 
 


