Challenges Predicting Ligand-Receptor Interactions of Promiscuous Proteins: The Nuclear Receptor PXR

Sean Ekins^{1,2,3*}, Sandhya Kortagere⁴, Manisha Iyer⁵, Erica J. Reschly⁵, Markus A. Lill⁶, Matthew R. Redinbo^{7,8,9} and Matthew D. Krasowski^{5,10}.

¹Collaborations in Chemistry, 601 Runnymede Avenue, Jenkintown, PA 19046, USA

²Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street, Baltimore, MD 21201, USA

³Department of Pharmacology, University of Medicine & Dentistry of New Jersey (UMDNJ)-

Robert Wood Johnson Medical School, 675 Hoes lane, Piscataway, NJ 08854, USA

⁴Department of Microbiology and Immunology, Drexel University College of Medicine,

Philadelphia, PA 19129, USA.

⁵Department of Pathology, University of Pittsburgh, Pittsburgh, PA, 15261,USA

⁶Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafaytte, IN 47907, USA.

⁷Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA,

⁸Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,

⁹The Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA, ¹⁰ Current address: Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA

Corresponding author: Sean Ekins, Ph.D., D.Sc., Collaborations in Chemistry, 601 Runnymede Avenue, Jenkintown, PA 19046. Phone 215-687-1320; Fax 215-481-0159;

* Email ekinssean@yahoo.com

Compound	Experimental	Predicted
ANDROSTANES	Activity	Activity
Androstenedione	4.69	•
11-Ketoetiocholanone	4.39	
Epitestosterone sulfate	5.47	
5α-Androstane	2.00	
4,16-Androstadien-3-one	5.15	3.74
PREGNANES	5.15	5.74
Corticosterone	5.00	4.88
Cortisone	4.16	
Pregnenolone	5.64	
Pregnanediol glucuronide	4.26	2101
17α , 20β -Dihydroxyprogesterone	2.00	
Dexamethasone	4.39	2.63
BILE ACIDS / SALTS		
Chenodeoxycholic acid	2.00	3.88
Glycodeoxycholic acid	2.00	5.93
Taurocholic acid	2.00	2.71
5β -cholestan- 3α , 7α , 12α -triol	2.00	2.88
23-Nordeoxycholic acid	4.79	5.40
Petromyzonol sulfate	4.55	3.37
Scymnol – sulfated	4.31	2.97
Taurolithocholic acid 3-sulfate, disodium	4.08	4.77
salt		,
α-Cholestanol	2.00	1.70

Table S10. External Validation test Set Predictions for 4D-QSAR ($R^2 = 0.02$) (Bold = outliers).

The following equations relate to the individual classes of steroids and show the cross validated correlations (XV-R²). It would appear the larger bile salt/ acid dataset has the lowest cross validated correlation. These datasets were tested with external compounds although the data indicates a negative correlation for the androstanes (-0.77) and no correlation for the pregnanes and bile salts/ acids. In all the equations ACCEPTOR = hydrogen bond acceptor, ALL = any atom, NP = non-polar and POSITIVE = positively charged. It would seem overall to show mainly steric/non-polar interactions while hydrogen bond acceptor descriptors are highlighted in the androstanes equation.

Androstanes activity = 4.55 - 8.54 * GC1 (ACCEPTOR) - 12.07 * GC2 (ALL) - 6.06 * GC3(NP) + 1.52 * GC4 (NP)N=20, R² = 0.94, Cross validated (XV)-R² = 0.89 Pregnanes activity = 3.21 - 7.12 * GC1 (NP) - 21.56 * GC2 (ALL) + 3.59 * GC3 (NP) - 1.46 *

GC4 (ALL) + 4.29 * GC5 (NP) N=23, $R^2 = 0.91$, XV- $R^2 = 0.84$

Bile salts / acids activity = 0.43 – 23.81 * GC1 (ALL) + 34.3 * GC2 (ALL) – 6.07 * GC3 (ALL) + 5.88 * GC4 (ALL) – 5.04 * GC5 (ALL) + 3.89 * GC6 (NP) + 12.35 * GC7 (ALL) – 13.66 * GC8 (POSITIVE)

N=41, $R^2 = 0.77$, XV- $R^2 = 0.64$