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Supporting Information 

Flux balance analysis 

Flux balance analysis (FBA) is a computational approach to characterize the behavior of 

large (>103 reactions) chemical reaction networks 3,5,44-46. In FBA, a network is 

represented by a set of stoichiometric equations describing chemical reactions. FBA 

takes advantage of the invariance of metabolite concentrations in a metabolic network 

that is in steady-state. This invariance implies that only some distributions of metabolic 

fluxes – rates at which individual reactions proceed – do not violate the law of mass 

conservation. Among these allowed steady-state fluxes, FBA can identify fluxes that 

have particular properties of interest in a given environment, defined by a maximum 

influx of external nutrients. We are here interested in one key property, namely whether 

a given metabolic network can sustain life in a given environment. That is, can it 

produce all key biochemical precursors necessary to sustain growth and energy 

production? Flux balance analysis allows us to answer this question. In our work we use 

a set of biochemical precursors from E. coli 47-49 as the set of required compounds a 

network needs to synthesize, by using linear programming to optimize the flux through 

a specific objective function, in this case the reaction representing the production of 

biomass precursors we are able to know if a specific metabolic network is able to 

synthesize the precursors or not. The precursors include all 20 proteinaceous amino 

acids, nucleotides, deoxynucleotides, putrescine, spermidine, 5-methyltetrahydrofolate, 

coenzyme-A, acetyl-CoA, succinyl-CoA, cardiolipin, FAD, NAD, NADH, NADP, 

NADPH, glycogen, lipopolysaccharide, phosphatidylethanolamine, peptidoglycan, 

phosphatidylglycerol, phosphatidylserine and UDPglucose. Flux balance analysis relies 

on linear programming 50 to identify network properties of interest. We here used the 

packages CPLEX (11.0, ILOG; http://www.ilog.com/) and CLP (1.4, Coin-OR; 

https://projects.coin-or.org/Clp) to solve the associated linear programming problems.    
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We studied metabolic networks in one main aerobic environment, a minimal 

environment composed of one or more carbon sources, oxygen, ammonia, inorganic 

phosphate, sulfate, sodium, potassium, iron, protons and water. When studying different 

growth phenotypes of a particular metabolic network we here focus on carbon sources, 

and thus vary only the carbon source in this minimal aerobic environment. For example, 

when we say that a network is able to sustain life on five specific carbon sources, we 

mean that it produces all essential biosynthetic precursors (a non-zero growth flux) 

when each of these carbon sources is provided as the sole carbon source in a minimal 

medium. This implies of course that any subset or combination of these five carbon 

sources would also suffice to sustain life. The 101 possible carbon sources we study 

here represent a tiny fraction of 101/550=18.3% of all carbon-containing metabolites in 

E. coli, and an even smaller fraction 101/4425=2.2% of carbon containing metabolites 

in our “universe” of metabolites (Figure S1a). Many metabolites other than those from 

E. coli can and do serve as carbon sources for other prokaryotes. Computational 

limitations prevented us from analyzing more complex carbon phenotypes. 

For some analyses, we also used a rich aerobic environment  51. This environment 

is composed of 36 metabolites, which includes the proteinaceous aminoacids , carbon 

dioxide, thiamin, nicotinamide mononucleotide, pantoate, and all the metabolites 

available in the minimal environment.   

The global reaction set 

Each metabolic network is a point in a much larger genotype space of networks. For the 

“universe” of reactions that can occur in these networks we used data from the 

LIGAND database 52 of the Kyoto Encyclopedia of Genes and Genomes (KEGG; 

http://www.genome.ad.jp/kegg/ligand.html) 53. The LIGAND database is a database of 

chemical compounds and reactions in biological pathways that is compiled from 
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pathway maps of metabolism of carbohydrates, energy, lipids, nucleotides, amino acids 

and others. Also included in the database is the list of recommended names for enzymes 

given by the Nomenclature Committee of the International Union of Biochemistry and 

Molecular Biology (NC-IUBMB) (http://www.chem.qmul.ac.uk/iubmb/enzyme/) which 

includes all categorized enzymes (oxidoreductases, transferases, hydrolases, lyases, 

isomerases and ligases). 

We used specifically the REACTION and COMPOUND sections of the LIGAND 

database to construct our global reaction set. From this data we pruned (i) all reactions 

involving general polymer metabolites of unspecified numbers of monomer units 

(C2H6(CH2)n), or, similarly, general polymerization reactions that were of the form An+ 

B → An+1, because their abstract form makes them unsuitable for stoichiometric 

analysis, (ii) reactions involving glycans, because of their complex structure, (iii) 

reactions that were not stoichiometrically or elementally balanced, and (v) reactions 

involving complex metabolites without chemical information about their structure.  

The starting point of our work is the E. coli metabolic network (IJR904) 19 which 

comprises 726 reactions (excluding transport reactions). We merged all reactions in the 

E.coli network with the reactions in the KEGG dataset. (Only few E.coli reactions, such 

as specific nutrient or waste transport reactions necessary for FBA, and some specific 

polymerization reactions were not already in the KEGG database.) After these steps of 

pruning and merging, our global reaction set consisted of 5870 reactions and 4634 

metabolites. 

The set of networks able to sustain life on a given set of carbon sources is 

connected.  

We note that two network genotypes able to sustain life on a given set of carbon sources 

can be reached from one another through single mutations in genotype space without 
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abolishing this ability. To see this, consider the set of reactions R1 and R2 that occur in 

two arbitrary such networks. Denote the network formed of the union of these reaction 

sets as . Note that the addition of a chemical reaction to any network will not 

abolish its ability to sustain life on any given spectrum of carbon sources. This means 

that there exists a sequence of single reaction changes  that leads from R1 to 

, as well as another sequence that leads from R2 to . Denote 

for any mutational change  its opposite as . That is, if  is the deletion of a reaction 

r, then  is the addition of the same reaction to a network that does not contain it, and 

vice versa. It follows from the above considerations that the sequence of mutations 

 lead from R1 to R2 without abolishing the ability to sustain life. 

Random walks in genotype space 

We explore the vast space of metabolic networks by long random walks that leave a 

network’s ability to synthesize all essential biomass components unchanged. In each 

step of such a walk, one reaction is eliminated or added to a network. During a 

sufficiently long random walk, the reactions in a network become effectively 

randomized, yet the phenotype remains constant. We are well aware that recombination 

through unequal cross-over or horizontal gene transfer may change more than one 

reaction at a time, but we focus here on individual reactions, because they are the 

smallest sensible unit of change. In biological evolution, natural selection probably 

plays a major role in changing the structure of biological networks. For example, the 

addition of a reaction to a metabolic network may become favorable in a new 

environment, and go to fixation without affecting the network’s ability to sustain life in 

the original environment. Because the detailed modeling of these and similar 

evolutionary dynamics would require us to make many ad hoc assumptions, we instead 

focus on the more tractable question whether changes can preserve metabolic 

phenotypes.  
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Each step of the random walks we use has two parts. The first part consists of 

mutation, the deletion of a randomly chosen reaction from a network, or the addition of 

a new randomly chosen reaction from the global reaction set above. We constrain 

variation in the number of reactions in this random walk by means of a bias in the 

choice of mutation that depends linearly on the number of reactions in the metabolic 

network. Specifically, the probability that a reaction is deleted (as opposed to added) is 

given by pdel=R/R0-0.5, where R is the number of reactions in the current network, and 

R0 is the number of reactions in the initial network, i.e., at the start of the random walk. 

With this procedure the networks have approximately 1000 reactions throughout our 

random walks, because we used the E. coli network as the starting network for these 

random walks. Without constraint, the number of reactions in a metabolic network 

would steadily increase, because networks with more reactions are more likely to 

sustain life in a given environment. We note that our approach allows an increase in the 

number of reactions of roughly 14 percent relative to the starting (E.coli) network. It  

would thus not bias our estimates of the robustness of randomized viable networks by 

more than that amount. In the second part of a random walk’s step, we apply flux 

balance analysis to verify that the new metabolic network still has the same phenotype, 

i.e., that it can still grow on a specific set of carbon sources. If so, the mutated network 

is accepted and the next step of the walk starts with the mutated network; if not, the 

mutated network is rejected, and the next step of the random walk starts with the 

previous (unmutated) network.  

In carrying out these random walks, it is important to proceed for as many steps as 

are needed to “erase” the “memory” of the initial state. To arrive at a heuristic criterion 

for the required number of steps, we determined, first, the autocorrelation function of 

the growth flux 5,19 along a random walk. This autocorrelation function decays to a 

value of zero in around 500 (Figure S1a) mutational steps. Unless otherwise mentioned, 

the number of mutational steps we use in our analysis is 104, and thus vastly exceeds 
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this required number of steps. Second, we recorded the (Hamming) distances of the 

random walker to the initial network during random walks. This distance first increases, 

and then reaches a stochastic equilibrium after about 5,000 steps, a number smaller than 

the 104 steps we routinely used. Finally, we note that the networks we studied have less 

than 103 reactions. In a random walk of 104 steps, each reaction is thus mutated many 

times over. Taken together, these observations show that 104 steps are more than 

sufficient to effectively randomize the initial network. We will refer to the end-point of 

such a random walk as a random viable metabolic network with a given phenotype.  It 

may be very different from a random sample of chemical reactions from the whole set 

of reactions we consider (Figure S1a), which may not sustain life in any environment.   

 We call the random walk defined above an unbiased random walk, because it 

does not lead into a particular direction. To study different aspects of network evolution, 

we also use several random walks with the following specific biases.  

First, to study the diameter of the set of genotypes with a given phenotype, it is 

necessary to obtain metabolic networks whose Hamming distance to the starting 

network is as large as possible. To this end, we used a forced random walk. Here, 

whenever a reaction that occurred in the initial network is removed from the network, 

we do not allow it to be added again. In this manner, no individual step of the walk can 

decrease the Hamming distance to an initial network.  

 Second, to obtain networks that grow on a specific target number kT of carbon 

sources (without regard to the identity of these carbon sources), we start with a network 

that sustains growth on some number k0 of carbon sources. If k0> kT, we allow only 

mutations that maintain or decrease the number of carbon sources a network is able to 

grow on. Specifically, we revert a newly mutated network to its previous state whenever 

the number of carbon sources that it grows on is greater than the previous state, or 
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smaller than the target number of carbon sources. If k0< kT, we allow only mutations 

that maintain or increase the number of carbon sources a network is able to grow on.  

Third, to find a network that grows on a specific target set of carbon sources (C0, 

C1, …, Ck), i.e., a network whose phenotype PT is a specific binary vector (Figure S1), 

we accept new mutations only when they decrease or do not alter the Hamming distance 

between the current phenotype P and the target phenotype PT , d(P,PT). 

Characterizing maximum genotype distances 

To study the maximal distances of two genotypes with the same phenotype, we began 

with the E. coli network, and first obtained one network expressing different phenotypes 

distinguished by the number k=5,10,20,40 of carbon sources they grow on. From each 

of these initial networks, we performed 100 forced random walks of 104 mutational 

steps each that conserved the phenotype of the initial network. We then recorded the 

distribution of the Hamming distances between the genotype G0 of each starter network 

and the maximally distant network GT at the end of the random walk, and studied the 

properties of this distribution as a function of k.    

Characterizing minimum genotypic distances for networks with different 

phenotypes 

To characterize the minimal genotype distance that separates a pair of genotypes (G1, 

G2) with different phenotypes (P1,P2), we performed the following analysis. For each 

class of phenotypes that grow on k=5,10,20,40 carbon sources, we generated 100 pairs 

of random viable metabolic networks. Each network in a pair has a different (random) 

phenotype, with the constraint that both networks from a pair can sustain life on the 

same number of carbon sources. For each pair, we then performed a forced random 

walk of 1,000 steps, beginning with the first network G1 (leaving the genotype G2 of the 
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second network unchanged). Each mutation in this random walk was required to (i) 

keep the network’s phenotype unchanged, and (ii) not increase the Hamming distance to 

G1. We recorded the minimal distance encountered in this random walk. 

Phenotype accessibility is independent of the number of carbon sources the 

metabolic network is viable in 

In our simulations we always considered phenotypes based on the full spectrum of 101 

carbon sources. When we perform a random walk for a network that grows on 20 

carbon sources, we only allow mutations to be accepted if they leave unchanged the 

phenotype (neither introduce the ability to be viable in an additional carbon source, or 

lose the viability in one of the original 20 carbon sources). However when we check the 

diversity of the phenotypic neighborhoods we do not limit new phenotypes to 20 carbon 

sources. Instead, we consider all the 2101 phenotypes that 101 carbon sources allow. A 

network that is viable in one carbon source may have a mutant that through a reaction 

addition will have a phenotype viable in, for example, 20 carbon sources. In the same 

manner, a network viable in 20 carbon sources may, through a reaction deletion, 

become viable in only one carbon source. This merely serves to show that all 2^101 

phenotypes are accessible in principle in all our analyses. In other words, a larger 

number of carbon sources does not enable more phenotypes 
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