Supplemental Information

We present here the chemical reactions as well as the equations provided from [1]. Note that there is no diseased tissue compartment in the present study. The concentrations are noted in brackets (see glossary below).

a. Chemical reactions

$V_{165}+M_{P B M} \stackrel{k_{\text {on, V66, MPBM }}}{\rightleftharpoons k_{\text {off }, V 165, M P B M}} V_{165} M_{\text {PBM }}$
$V_{165}+R_{1} \underset{k_{\text {off }, V, 1651}}{\stackrel{k_{\text {on }}, V 6, \mathrm{R1}}{ }} V_{165} R_{1}$

$V_{165}+N_{1} \underset{k_{\text {off }, V_{165 N 1}}}{\stackrel{k_{0 n, V 16, N 1}}{\rightleftharpoons}} V_{165} N_{1}$
$V_{165} N_{1}+R_{2} \underset{k_{0 \text { of }, V 165 N_{1}, R 2}}{\stackrel{k_{c}, V_{1}, R_{2}}{\rightleftharpoons}} R_{2} V_{165} N_{1}$
$V_{165} R_{2}+N_{1} \underset{k_{\text {off,V165R2,N1 }}}{\stackrel{k_{c, V 165 R 2, N 1}}{\rightleftharpoons}} R_{2} V_{165} N_{1}$
$V_{121}+R_{1} \underset{k_{\text {off }, V 121 \mathrm{R} 1}}{\stackrel{k_{\text {on, }, 12, R 1}}{\rightleftharpoons}} V_{121} R_{1}$
$V_{121}+R_{2} \underset{k_{\text {off }, V 121 \mathrm{R} 2}}{\stackrel{k_{\text {on, }, 121, R 2}}{\rightleftharpoons}} V_{121} R_{2}$
$V_{121}+R_{1} N_{1} \stackrel{k_{\text {on, V121,R1 }}}{\underset{k_{\text {off }, \text { V12 R1 }}}{\rightleftharpoons}} V_{121} R_{1} N_{1}$
$V_{121} R_{1}+N_{1} \underset{k_{\text {disooc,R1N1 }}}{\stackrel{k_{c, R 1, N 1}}{\rightleftharpoons}} V_{121} R_{1} N_{1}$
$R_{1}+N_{1} \underset{k_{d i s o c, R 1 N 1}}{\stackrel{k_{c, R 1, N_{1}}}{\rightleftharpoons}} R_{1} N_{1}$

b. interstitial space (tissue compartment only)

$\frac{d\left[M_{\text {EBM }}\right]}{d t}=-k_{\text {on,V165,MEBM }}\left[V_{165}\right]\left[M_{\text {EBM }}\right]+k_{\text {off,V165MEBM }}\left[V_{165} M_{\text {EBM }}\right]$
$\frac{d\left[M_{E C M}\right]}{d t}=-k_{\text {on, V165,MECM }}\left[V_{165}\right]\left[M_{E C M}\right]+k_{\text {off }, V 165 \text { MECM }}\left[V_{165} M_{\text {ECM }}\right]$
$\frac{d\left[M_{\text {PBM }}\right]}{d t}=-k_{\text {on,V165,MPBM }}\left[V_{165}\right]\left[M_{\text {PBM }}\right]+k_{\text {off,V165MPBM }}\left[V_{165} M_{\text {PBM }}\right]$

$$
\begin{align*}
& \frac{d\left[V_{165} M_{\text {EBM }}\right]}{d t}=k_{\text {on,V165,MEBM }}\left[V_{165}\right]\left[M_{\text {EBM }}\right]-k_{\text {off }, V 165 M E B M}\left[V_{165} M_{\text {EBM }}\right] \tag{S.4}\\
& \frac{d\left[V_{165} M_{E C M}\right]}{d t}=k_{\text {on,V165,MECM }}\left[V_{165}\right]\left[M_{\text {ECM }}\right]-k_{\text {off }, V 165 M E C M}\left[V_{165} M_{\text {ECM }}\right] \tag{S.5}\\
& \frac{d\left[V_{165} M_{P B M}\right]}{d t}=k_{\text {on,V165,MPBM }}\left[V_{165}\right]\left[M_{\text {PBM }}\right]-k_{\text {off }, V 165 \text { MPBM }}\left[V_{165} M_{\text {PBM }}\right] \tag{S.6}
\end{align*}
$$

c. cell surface (equations valid for both the tissue and the blood compartments)

$$
\begin{align*}
\frac{d\left[R_{1}\right]}{d t} & =s_{R 1}-k_{\text {int }, R 1}\left[R_{1}\right]-k_{\text {on }, V 165, R 1}\left[V_{165}\right]\left[R_{1}\right]+k_{\text {off }, V 165 R 1}\left[V_{165} R_{1}\right] \\
& -k_{\text {on }, V 121, R 1}\left[V_{121}\right]\left[R_{1}\right]+k_{\text {off }, V 121 R 1}\left[V_{121} R_{1}\right] \tag{S.7}\\
& -k_{c, R 1, N 1}\left[N_{1}\right]\left[R_{1}\right]+k_{\text {dissoc }, R 1 N 1}\left[R_{1} N_{1}\right] \\
\frac{d\left[R_{2}\right]}{d t} & =s_{R 2}-k_{\text {int }, R 2}\left[R_{2}\right]-k_{\text {on,V121,R2}}\left[V_{121}\right]\left[R_{2}\right]+k_{\text {off }, V 121 R 2}\left[V_{121} R_{2}\right] \\
& -k_{\text {on,V165,R2 }}\left[V_{165}\right]\left[R_{2}\right]+k_{\text {off }, V 165 R 2}\left[V_{165} R_{2}\right] \tag{S.8}\\
& -k_{c, V 165 N 1, R 2}\left[V_{165} N_{1}\right]\left[R_{2}\right]+k_{\text {off }, V 165 N 1, R 2}\left[R_{2} V_{165} N_{1}\right]
\end{align*}
$$

$$
\frac{d\left[N_{1}\right]}{d t}=s_{N 1}-k_{\mathrm{int}, \mathrm{N1}}\left[N_{1}\right]-k_{c, V 121 R 1, N 1}\left[V_{121} R_{1}\right]\left[N_{1}\right]+k_{\text {dissoc,R1N1}}\left[V_{121} R_{1} N_{1}\right]
$$

$$
\begin{equation*}
-k_{c, R 1, N 1}\left[N_{1}\right]\left[R_{1}\right]+k_{\text {dissoc,R1N1 }}\left[R_{1} N_{1}\right]-k_{\text {on }, V 165, N 1}\left[V_{165}\right]\left[N_{1}\right] \tag{S.9}
\end{equation*}
$$

$$
+k_{\text {off }, V 165 N 1}\left[V_{165} N_{1}\right]-k_{c, V 165 R 2, N 1}\left[V_{165} R_{2}\right]\left[N_{1}\right]+k_{\text {off }, V 165 R 2, N 1}\left[R_{2} V_{165} N_{1}\right]
$$

$$
\begin{equation*}
\frac{d\left[V_{121} R_{1}\right]}{d t}=-k_{\text {int }, V 121 R 1}\left[V_{121} R_{1}\right]+k_{\text {on,V121,R1 }}\left[V_{121}\right]\left[R_{1}\right]-k_{\text {off }, V 121 R 1}\left[V_{121} R_{1}\right] \tag{S.10}
\end{equation*}
$$

$$
-k_{c, R 1, N 1}\left[V_{121} R_{1}\right]\left[N_{1}\right]+k_{\text {dissoc,R1N } 1}\left[V_{121} R_{1} N_{1}\right]
$$

$$
\begin{equation*}
\frac{d\left[V_{121} R_{2}\right]}{d t}=-k_{\mathrm{int}, \mathrm{~V} 121 R 2}\left[V_{121} R_{2}\right]+k_{o n, V 121, R 2}\left[V_{121}\right]\left[R_{2}\right]-k_{\text {off }, V 121 R 2}\left[V_{121} R_{2}\right] \tag{S.11}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d\left[V_{165} R_{1}\right]}{d t}=-k_{\mathrm{int}, V 165 R 1}\left[V_{165} R_{1}\right]+k_{\text {on,V165,R1 }}\left[V_{165}\right]\left[R_{1}\right]-k_{\text {off }, V 165 R 1}\left[V_{165} R_{1}\right] \tag{S.12}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d\left[V_{165} R_{2}\right]}{d t}=-k_{\mathrm{int}, V 165 R 2}\left[V_{165} R_{2}\right]+k_{\text {on }, V 165, R 2}\left[V_{165}\right]\left[R_{2}\right]-k_{\text {off }, V 165 R 2}\left[V_{165} R_{2}\right] \tag{S.13}
\end{equation*}
$$

$$
-k_{c, V 165 R 2, N 1}\left[V_{165} R_{2}\right]\left[N_{1}\right]+k_{\text {off }, V 165 R 2, N 1}\left[R_{2} V_{165} N_{1}\right]
$$

$$
\begin{equation*}
\frac{d\left[V_{165} N_{1}\right]}{d t}=-k_{\text {int }, V 165 N 1}\left[V_{165} N_{1}\right]+k_{\text {on,V165,N1 }}\left[V_{165}\right]\left[N_{1}\right]-k_{\text {off }, V 165 N 1}\left[V_{165} N_{1}\right] \tag{S.14}
\end{equation*}
$$

$$
-k_{c, V 165 N 1, R 2}\left[V_{165} N_{1}\right]\left[R_{2}\right]+k_{\text {off }, V 165 N 1, R 2}\left[R_{2} V_{165} N_{1}\right]
$$

$$
\begin{align*}
\frac{d\left[R_{2} V_{165} N_{1}\right]}{d t}= & -k_{\text {int }, V 165 R 2 N 1}\left[R_{2} V_{165} N_{1}\right]+k_{c, V 165 R 2, N 1}\left[V_{165} R_{2}\right]\left[N_{1}\right] \\
& -k_{\text {off }, V 165 R 2, N 1}\left[R_{2} V_{165} N_{1}\right]+k_{c, V 165 N 1, R 2}\left[V_{165} N_{1}\right]\left[R_{2}\right] \tag{S.15}\\
& -k_{\text {off }, V 165 N 1, R 2}\left[R_{2} V_{165} N_{1}\right] \\
\frac{d\left[V_{121} R_{1} N_{1}\right]}{d t}= & -k_{\text {int,V121R1N1 }}\left[V_{121} R_{1} N_{1}\right]+k_{c, V 121 R 1, N 1}\left[V_{121} R_{1}\right]\left[N_{1}\right] \\
& -k_{\text {dissoc,V121N1 }}\left[V_{121} R_{1} N_{1}\right]+k_{\text {on,V121,R1N1 }}\left[V_{121}\right]\left[R_{1} N_{1}\right] \tag{S.16}\\
& -k_{\text {off }, V 121 R 1 N 1}\left[V_{121} R_{1} N_{1}\right] \\
\frac{d\left[R_{1} N_{1}\right]}{d t}= & -k_{\text {int,R1N1 }}\left[R_{1} N_{1}\right]+k_{c, R 1, N 1}\left[N_{1}\right]\left[R_{1}\right]-k_{\text {disooc,R1N1 }}\left[R_{1} N_{1}\right] \tag{S.17}\\
& -k_{\text {on,V121,R1 }}\left[V_{121}\right]\left[R_{1} N_{1}\right]+k_{\text {off }, V 121 R 1}\left[V_{121} R_{1} N_{1}\right]
\end{align*}
$$

d. ligands in the tissue compartment

We denote the tissue compartment by the subscript N.

$$
\begin{align*}
\frac{d\left[V_{121}\right]_{N}}{d t} & =q_{V 121}^{N}-k_{o n, V 121, R 1}^{N}\left[V_{121}\right]_{N}\left[R_{1}\right]_{N}+k_{o f f, V 121 R 1}^{N}\left[V_{121} R_{1}\right]_{N} \\
& -k_{o n, V 121, R 1 N 1}^{N}\left[V_{121}\right]_{N}\left[R_{1} N_{1}\right]_{N}+k_{o f f, V 121 R 1 N 1}^{N}\left[V_{121} R_{1} N_{1}\right]_{N} \tag{S.18}\\
& -k_{o n, V 121, R 2}^{N}\left[V_{121}\right]_{N}\left[R_{2}\right]_{N}+k_{o f f, V 121 R 2}^{N}\left[V_{121} R_{2}\right]_{N} \\
& -k_{p V}^{N B} \frac{S_{N B}}{U_{N}} \frac{\left[V_{121}\right]_{N}}{K_{A V, N}}+k_{p V}^{B N} \frac{S_{N B}}{U_{N}} \frac{U_{B}}{U_{p}}\left[V_{121}\right]_{B}
\end{align*}
$$

The first term of the equation represents the secretion of the VEGF ${ }_{121}$ isoform by parenchymal cells. The next six terms correspond to the interactions of the VEGF 121 isoform with its receptors. Finally, the last two terms represent the extravasation and intravasation, respectively, of VEGF ${ }_{121}$. Because of closed pores and inaccessible spaces, free diffusible VEGF is constrained in the "available interstitial fluid volume" $U_{A V}=K_{A V}$ U, where $K_{A V}$ is the available volume fraction. The displacement of VEGF molecules from the compartment i to j follows:

$$
\begin{equation*}
U_{A V, i} \frac{d\left[V_{121}\right]_{A V, i}}{d t}=-k_{p V}^{i j} S_{i j}\left[V_{121}\right]_{A V, i}+k_{p V}^{j i} S_{i j}\left[V_{121}\right]_{A V, j} \tag{S.19}
\end{equation*}
$$

which can be re-expressed in terms of $\left[V_{121}\right]_{j}$ by using the relationship $U_{A V, i}\left[V_{121}\right]_{A V, i}=$ $U_{i}\left[V_{121}\right]_{i}$. Note that, for the blood compartment, $U_{p}=K_{A V, B} U_{B}$, which means that the volume of plasma is the available fluid volume for VEGF in the blood. Similarly, the equation governing VEGF $_{165}$ is:

$$
\begin{align*}
\frac{d\left[V_{165}\right]_{N}}{d t} & =q_{V 165}^{N}-k_{\text {on,V165,MEBM }}^{N}\left[V_{165}\right]_{N}\left[M_{\text {EBM }}\right]_{N}+k_{\text {off }, V 165, M E B M}^{N}\left[V_{165} M_{\text {EBM }}\right]_{N} \\
& -k_{\text {on,V165,MECM }}^{N}\left[V_{165}\right]_{N}\left[M_{E C M}\right]_{N}+k_{\text {of }, V 165 M E C M}^{N}\left[V_{165} M_{E C M}\right]_{N} \\
& -k_{\text {on,V165,MPBM }}^{N}\left[V_{165}\right]_{N}\left[M_{P B M}\right]_{N}+k_{\text {off }, V 165 M P B M}^{N}\left[V_{165} M_{\text {PBM }}\right]_{N} \tag{S.20}\\
& -k_{\text {on,V165,R1}}^{N}\left[V_{165}\right]_{N}\left[R_{1}\right]_{N}+k_{\text {off }, V 165 R 1}^{N}\left[V_{165} R_{1}\right]_{N}-k_{\text {on,V165,R2 }}^{N}\left[V_{165}\right]_{N}\left[R_{2}\right]_{N} \\
& +k_{\text {off,V165R2 }}^{N}\left[V_{165} R_{2}\right]_{N}-k_{o n, V 165, N 1}^{N}\left[V_{165}\right]_{N}\left[N_{1}\right]_{N}+k_{\text {off }, V 165 N 1}^{N}\left[V_{165} N_{1}\right]_{N} \\
& -k_{p V}^{N B} \frac{S_{N B}}{U_{N}} \frac{\left[V_{165}\right]_{N}}{K_{A V, N}}+k_{p V}^{B N} \frac{S_{N B}}{U_{N}} \frac{U_{B}}{U_{p}}\left[V_{165}\right]_{B}
\end{align*}
$$

e. ligands in the blood compartment

We denote the blood compartment by the subscript B.

$$
\begin{align*}
& \frac{d\left[V_{121}\right]_{B}}{d t}=-c_{V 121}\left[V_{121}\right]_{B}-k_{p V}^{B N} \frac{S_{N B}}{U_{p}}\left[V_{121}\right]_{B}+k_{p V}^{N B} \frac{S_{N B}}{U_{B}} \frac{\left[V_{121}\right]_{N}}{K_{A V, N}} \tag{S.21}\\
& \frac{d\left[V_{165}\right]_{B}}{d t}=-c_{V 165}\left[V_{165}\right]_{B}-k_{p V}^{B N} \frac{S_{N B}}{U_{p}}\left[V_{165}\right]_{B}+k_{p V}^{N B} \frac{S_{N B}}{U_{B}} \frac{\left[V_{165}\right]_{N}}{K_{A V, N}} \tag{S.22}
\end{align*}
$$

where c_{V} represents the clearance of VEGF from the blood.

GLOSSARY

Concentrations and densities	
$\left[M_{E C M}\right],\left[M_{E B M}\right],\left[M_{P B M}\right]$	Density of VEGF binding sites in the ECM, EBM and PBM $\left[V_{121}\right],\left[V_{165}\right]$ available interstitial fluid
$\left[R_{1}\right],\left[R_{2}\right]$	Density of the unoccupied receptor tyrosine kinases VEGFR1 and VEGFR2
$\left[N_{1}\right]$	Density of the unoccupied co-receptor (NRP1)
$\left[R_{1} N_{1}\right]$	Density of the VEGFR1-NRP1 complex
$\left[V_{i} R_{j}\right]$	Concentration of VEGF isoform i bound to VEGF receptor VEGFR
$\left[V_{i} N_{1}\right]$	Concentration of VEGF isoform i bound to co-receptor NRP1
$\left[R_{2} V_{165} N_{1}\right]$	Concentration of ternary complex VEGFR2-VEGF $165-$ NRP1
$\left[V_{121} R_{1} N_{1}\right]$	Concentration of ternary complex VEGF 121 -VEGFR1-NRP1
Kinetic parameters $^{q_{V 121}, q_{V 165}}$	Secretion rate of VEGF
s_{R}	Rate at which the receptors are inserted into the cell membrane
$k_{\text {on }}$	Kinetic rate for binding

k_{C}	Kinetic rate for receptor coupling
$k_{\text {off }}$	Kinetic rate for unbinding
$k_{\text {int }}$	Internalization rate of the receptors
$k_{p V}^{j}$	Microvascular permeability k_{p} for VEGF (noted as V) from compartment i to $j(\mathrm{~N}=$ tissue; B = blood)
$C_{V 121}, c_{V 165}$	Clearance of VEGF ${ }_{121}$ and VEGF ${ }_{165}$ in the blood
Geometric parameters	Volume of the compartment $i(N$ = tissue, B = blood, $p=$ plasma)
U_{i}	Total surface of the microvessels at the interface of the tissue (N) and the blood (B)
$S_{N B}$	Available volume fraction in the tissue, i.e., ratio of available fluid volume to total tissue volume U_{i}
$K_{A V, i}$	

REFERENCE:

1. Stefanini MO, Wu FT, Mac Gabhann F, Popel AS (2008) A compartment model of VEGF distribution in blood, healthy and diseased tissues. BMC Syst Biol 2: 77.
