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Supplementary Information 

 
 
Trajectory Transformation from 2D to 1D. Each biological trajectory is converted to 
1D by connecting time-consecutive points, calculating the run length along the track, and 
then plotting it against the time (i.e. the frame number). The direction of the run is 
determined by examining the position of the particle relative to the cell center, where a 
minus or a plus sign is assigned if the particle moves towards the cell center or the 
periphery, respectively. The set of biological trajectories translated to 1D is used for two 
purposes. First, it represents the training set for the SVM to segment the 1D in silico 
trajectories (see section Trajectory Segmentation by Supervised Support Vector 
Machine). In this case the SVM was trained with 60 randomly selected 1D biological 
trajectories, where the directed motion labels were retained from the 2D data set.  
Second, it is used to compute directed motions length and velocity probability 
distributions (PDFs) (see section Optimization of Parameters).  
 
Trajectory Segmentation by Supervised Support Vector Machine The images of 
infected cells were processed in order to ascertain directed motion patterns. A single 
particle tracking algorithm [1] was applied to the images, and consequently, 2D 
trajectories of virus particles were obtained. Following that, the trajectories were 
segmented using a Support Vector Machine (SVM) algorithm [2,3] to extract directed 
motions. The segmentation process involved a training and a prediction stage. During the 
training the SVM is presented with a set of β feature vectors of dimension n (number of 
features) that had specified class labels (e.g. pattern or not). In the case of 2D trajectory 
segmentation, positive and negative examples of directed motion patterns were manually 
selected. The SVM identifies the maximum-margin separating hyperplane between 
vectors belonging to different classes. After training, the SVM represents a model that 



assigns a class label to a given feature vector (prediction stage).  
 
Given the training feature vectors 

€ 

x i ∈ ℜn , 

€ 

i =1,...,β  and the class label vector 

€ 

y ∈ 1,−1{ }β , SVM determines the maximum-margin separating hyperplane (w,b) by 
solving the following simplex optimization problem: 
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s.t.:  
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(wTx i + b)yi ≥1− si   
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i =1,...,β   (2) 
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si ≥ 0     
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i =1,...,β   (3) 
 
where C>0 is the penalization parameter for the error term (Eq. 1) and si are the so-called 
slack variables. Non-linear classifiers can be obtained replacing every dot product by 
non-linear kernel function. The kernel function 

€ 

K(x i,x j )  determines how feature vectors 
xi are mapped into a higher dimensional space, and the SVM finds in this space the 
hyperplane that separates the data so as to minimize the error. The radial basis function 

kernel, 

€ 

K(x i,x j ) = e−γ x i −x j
2

, where γ>0, was used in this study. 
 
Each model is characterized by the parameters C and γ. As a means to determine a good 
parameter set, an estimate of the prediction accuracy is evaluated on a grid composed of 
(C,γ) pairs [4], where the pair leading to the best accuracy is chosen. Prediction accuracy 
is estimated through cross validation. This entails dividing the training data set into five 
subsets of equal size, where prediction is then performed over each subset using the 
classifier trained on the remaining subsets. The estimated accuracy is given by the 
percentage of correctly classified data instances. The best accuracy achieved for the 
classification of virus directed motion patterns was ~98%, corresponding to the 
parameters (C,γ) = (3.6e4,33.1).  
 
In summary, each trajectory is windowed, the obtained disjoint segments are mapped into 
low dimensional feature vectors [2] and classified as directed motion or not, based on the 
training data set. 
 
The translation from 2D to 1D yields a direct correlation between distance traveled along 
microtubules and time. Consequently, some of the features defined in [2], which 
characterize the segment structure, are redundant. The same segmentation accuracy can 
be achieved through a decreased set of features, which results in a reduction of the 
computational complexity and a more robust classifier. In this work, the net squared 
distance and sum of squared step length were used:  
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ψ1 = x end − x start( )2 , (4) 

€ 

ψ2 = x i+1 − x i( )2
i
∑ . (5) 

 
 
Dynein and Kinesin Dynamics. The virus particle is modeled as cargo that is moved 



along a 1-dimensional microtubule by motor proteins. The movement of the virus is 
dictated by the number of bound motor proteins, and it is assumed that dynein (D) and 
kinesin (K) pull the virus in different directions. The maximum number of motor proteins 
that can affect the position of the virus is limited by the number of binding sites (ρ) on the 
viral capsid. The dynamics of the model are governed by the stochastic binding and 
unbinding of the dynein and kinesin particles and their stepping along the microtubule. 
The step sizes of the motor proteins, denoted by µD and µK are assumed to be constant (-8 
nm for dynein, +8 nm for kinesin), and the displacement of the virus directly corresponds 
to one of the motor proteins taking a step in its characteristic direction.  
 
Common Binding Sites, Model I. Comprises common binding sites for dynein and 
kinesin, and has been discussed in detail in the main text.  
 
Separate Binding Sites, Model II. A second model is considered where the dynein and 
kinesin motor proteins have their own distinct binding sites on the virus (Fig. S1A). This 
effectively leads to a situation where there are ρD number of binding sites available for 
dynein and ρK for kinesin: 
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D dµ →  D+ µD   

€ 

K kµ →  K + µK   (6) 
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ρD
dα →  D   
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ρK
kα →  K   (7) 
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D dδ →  ρD   

€ 

K kδ →  ρK   (8) 
  
Single Motor Protein, Model III. A model involving only a single motor protein is 
considered, where dynein is able to move both to and from the cell periphery (Fig. S1B). 
The absence of kinesin reduces the number of events and parameters in the system, which 
is represented by:  
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D d+ →  D+ µD   

€ 

D d− →  D−µD     (9) 

€ 

ρ dα →  D   

€ 

D dδ →  ρ    (10) 
 
This model does not lead to directional runs, but rather the particle diffuses randomly.   
 
 
Kinesin Binding to Dynein, Model IV. The last model presents a binding dependence 
between dynein and kinesin. The two families of motors maintain different motilities and 
preferential directions, but only dynein is allowed to attach to a virus particle (Fig. S1C). 
Kinesin can only bind indirectly to the viral cargo through the dynein complex. This 
implies that the number of binding sites available for kinesin (ρK) is, at most, equal to the 
number of currently attached dynein complexes. Furthermore the unbinding of a dynein 
particle can also cause the detachment of a bound kinesin. This model was used to 
investigate the dependence of the kinesin motor protein on dynein.  
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K kδ →  ρK       (14) 
 
 
One possible mechanism of regulating motor cargo binding is that a motor binds 
indirectly to the cargo via another motor protein. In this model, kinesin is not able to bind 
to the virus particle directly, but rather binds to dynein. This model only exhibits minus-
end directed motions, and is thus not able to account for the virus motility. This behavior 
can be explained by the inability of kinesin to bind the cargo independently of dynein. 
Therefore an unbalanced configuration in which kinesin is predominant can never occur. 
We conclude that model III and IV would therefore require further levels of regulation to 
exhibit bidirectional behavior.  
 
Stochastic Simulation Algorithm. The Stochastic Simulation Algorithm (SSA) [5,6] 
simulates the time evolution of stochastic processes occurring at some prescribed rate. At 
each iteration of the SSA the process is advanced by a time unit depending on the overall 
propensity of the system and by an event that is selected depending on its relative 
propensity. The so-called propensity of an event is an unscaled probability for the event 
to occur in the interval [t,t+τ), where t is the current time and τ is the time-step. The 
propensities for events of the form  
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Xi
ki →  X j  (15) 

 
are calculated as 

€ 

ai = Xiki , where i is the index of the event, Xi is the number of particles 
(e.g. this can be the number of molecules of a particular species if the events are chemical 
reactions or dynein proteins in the aforementioned models), and ki is the rate of the 
process. Given that there are a total of M events involving N kinds of particles, the 
simulation is performed by executing three steps: 1) calculating the time-step, which is 
sampled from an exponential distribution:  
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τ ~ ε 1
amm=1

M
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  (16) 

 
then, 2) choosing the event that occurs in the interval [t,t+τ) by sampling from the point-
wise probabilities 

€ 

a j / amm=1

M
∑ , namely 
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P( j = l) =
al
amm=1

M
∑
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l =1,...,M   (17) 

 
and lastly, 3) re-computing the propensities and updating the values of Xi for 

€ 

i =1,...,N . 
These three steps are performed iteratively until the desired final time is reached.  
 



Optimization of Parameters. The parameters in the models (e.g. for model I: dµ, kµ, dα, 
kα, dδ, kδ) are not specified a priori, but determined by the stochastic optimization 
algorithm called Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [7,8]. 
This optimization technique has been proven to be effective in handling noise, multi-
modality, and discontinuities in the cost function and it is well suited to the optimization 
of stochastic models. 
 
The cost function is chosen as the sum of the symmetric Kullback-Leibler divergence 
(DSKL) of directed motion length and velocity probability density functions (PDFs) 
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F = DSKL
length + DSKL

velocity   (19) 
 
Given a target PDF p(x) and a test PDF q(x), the DSKL is defined as  
 

€ 

DSKL = p(x)log p(x)
q(x)

dx
−∞

∞

∫ + q(x)
−∞

∞

∫ log q(x)
p(x)

dx   (18) 

 
Here p(x) are the biological directed motion length and velocity distributions, while q(x) 
are the in silico distributions that are obtained for a given set of parameters. For each set 
of parameters to be evaluated, 3000 trajectories were stochastically simulated and 
segmented.  
 
 
Sensitivity Analysis. Each of the six optimal parameters for the non-competing binding 
sites model with 14 receptors was perturbed keeping the other parameters fixed.  This is 
equivalent to a crosscut of the cost function with respect to the perturbed parameter.  The 
resulting values of the cost function are shown in Figure S3.  The parabolic shapes of the 
perturbations indicate that a minimum was found by CMA-ES, and that local 
perturbations of the optimal parameters yield a less optimal set of parameters.  In some 
cases, the optimal parameter found by CMA-ES is not the minimum in the crosscut (e.g. 
the stepping rate of kinesin in Fig S3), the reasons being that the model is inherently 
noisy and nonlinear.   
 
 
Parallelization and computational cost. The optimization algorithm was implemented 
to allow parallel cost function evaluations according to both shared and distributed 
parallelization paradigms. More then 105 CPU hours were needed at the Swiss National 
Supercomputing Centre (CSCS) to perform the computations.  
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Fig. S1: Alternative models for motor-mediated virus movements on microtubules  
 
A) In addition to model I (Fig. 2A), model II provides distinct dynein and kinesin binding 
sites on the virus particle allowing a tug-of-war between opposite polarity dynein (blue) 
and kinesin (orange) motors on a microtubule (green).  B) Model III proposes unique 
binding sites, as shown for dynein (blue) allowing the protein to move in both directions.  
C) Model IV describes unique binding sites for dynein, to which kinesin is allowed to 
bind subsequently.   



 
 
Fig. S2: Parameter values vs number of binding sites   
Optimal parameter values (blue=dµ, green=kµ, red=dα, cyan=kα, magenta=dδ, yellow=kδ) 
obtained varying the number of motor binding sites for the overlapping binding sites 
model. As can be seen between 6 and 16 number of motor binding sites parameters are 
almost constant. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Fig. S3: Sensitivity Analysis.  
The six optimal parameters for the non-competing binding sites model with 14 receptors 
were each perturbed by a quantity in the range between 

€ 

±  0.05.  Shown are (top) the 
stepping rates, (middle) binding rates, and (bottom) unbinding rates for dynein (left) and 
kinesin (right).      
 
 
 
 
 
 



 
Parameters Binding 

sites dµ kµ dα kα dδ kδ F 
2 134.70 132.56 0.8360 0.8815 1.4404 1.5681 0.553 
4 112.51 109.45 0.3439 0.3634 1.1428 1.2099 0.141 
6 108.72 106.42 0.1938 0.2215 1.0571 1.2010 0.088 
8 107.72 104.01 0.1542 0.1496 1.1607 1.1252 0.075 
10 106.56 103.73 0.1200 0.1215 1.1790 1.1896 0.070 
12 107.59 105.89 0.0867 0.0993 1.0762 1.2479 0.069 
14 108.33 104.13 0.0799 0.0843 1.1702 1.2162 0.065 
16 107.62 107.57 0.0503 0.0760 0.8324 1.3570 0.083 
18 37.54 16.51 0.2615 6.4234 0.0001 2.8456 2.156 
20 84.83 120.44 0.6701 0.3506 7.8185 4.5548 3.612 

 
Table S1:  
Optimized cost function and parameter values against number of motor binding sites for 
the overlapping binding sites model. Different optimization runs were performed varying 
the number of motor binding sites. Every entry in the table shows the best set of 
parameters obtained. dµ and kµ correspond to the dynein and kinesin stepping rate, 
respectively, and are expressed in stepping events per second. The single motor speed is 
given by dµ or kµ times the step size (8nm). dα and kα are the binding rates for dynein and 
kinesin. They are expressed in events per second per receptor. dδ and kδ represent the 
unbinding rates for dynein and kinesin and they are expressed as detachment events per 
second. F is the cost function value at the end of the optimization.  


