
A stochastic model for microtubule motors describes
the in vivo cytoplasmic transport of human adenovirus

Mattia Gazzola1, Christoph J. Burckhardt2, Basil Bayati1, Martin Engelke2, Urs F.
Greber2*), Petros Koumoutsakos1*)

1Chair of Computational Science, ETH Zurich, CH-8092, Switzerland
2 Institute of Zoology, University of Zurich, CH-8057, Switzerland

*) corresponding authors: ufgreber@zool.uzh.ch and petros@ethz.ch

Supplementary Information

Trajectory Transformation from 2D to 1D. Each biological trajectory is converted to
1D by connecting time-consecutive points, calculating the run length along the track, and
then plotting it against the time (i.e. the frame number). The direction of the run is
determined by examining the position of the particle relative to the cell center, where a
minus or a plus sign is assigned if the particle moves towards the cell center or the
periphery, respectively. The set of biological trajectories translated to 1D is used for two
purposes. First, it represents the training set for the SVM to segment the 1D in silico
trajectories (see section Trajectory Segmentation by Supervised Support Vector
Machine). In this case the SVM was trained with 60 randomly selected 1D biological
trajectories, where the directed motion labels were retained from the 2D data set.
Second, it is used to compute directed motions length and velocity probability
distributions (PDFs) (see section Optimization of Parameters).

Trajectory Segmentation by Supervised Support Vector Machine The images of
infected cells were processed in order to ascertain directed motion patterns. A single
particle tracking algorithm [1] was applied to the images, and consequently, 2D
trajectories of virus particles were obtained. Following that, the trajectories were
segmented using a Support Vector Machine (SVM) algorithm [2,3] to extract directed
motions. The segmentation process involved a training and a prediction stage. During the
training the SVM is presented with a set of β feature vectors of dimension n (number of
features) that had specified class labels (e.g. pattern or not). In the case of 2D trajectory
segmentation, positive and negative examples of directed motion patterns were manually
selected. The SVM identifies the maximum-margin separating hyperplane between
vectors belonging to different classes. After training, the SVM represents a model that

assigns a class label to a given feature vector (prediction stage).

Given the training feature vectors

€

x i ∈ ℜn ,

€

i =1,...,β and the class label vector

€

y ∈ 1,−1{ }β , SVM determines the maximum-margin separating hyperplane (w,b) by
solving the following simplex optimization problem:

€

min :
w,b

€

f (w,s) =
1
2
wTw+ C si

i=1

β

∑ (1)

€

s.t.:

€

(wTx i + b)yi ≥1− si

€

i =1,...,β (2)

€

si ≥ 0

€

i =1,...,β (3)

where C>0 is the penalization parameter for the error term (Eq. 1) and si are the so-called
slack variables. Non-linear classifiers can be obtained replacing every dot product by
non-linear kernel function. The kernel function

€

K(x i,x j) determines how feature vectors
xi are mapped into a higher dimensional space, and the SVM finds in this space the
hyperplane that separates the data so as to minimize the error. The radial basis function

kernel,

€

K(x i,x j) = e−γ x i −x j
2

, where γ>0, was used in this study.

Each model is characterized by the parameters C and γ. As a means to determine a good
parameter set, an estimate of the prediction accuracy is evaluated on a grid composed of
(C,γ) pairs [4], where the pair leading to the best accuracy is chosen. Prediction accuracy
is estimated through cross validation. This entails dividing the training data set into five
subsets of equal size, where prediction is then performed over each subset using the
classifier trained on the remaining subsets. The estimated accuracy is given by the
percentage of correctly classified data instances. The best accuracy achieved for the
classification of virus directed motion patterns was ~98%, corresponding to the
parameters (C,γ) = (3.6e4,33.1).

In summary, each trajectory is windowed, the obtained disjoint segments are mapped into
low dimensional feature vectors [2] and classified as directed motion or not, based on the
training data set.

The translation from 2D to 1D yields a direct correlation between distance traveled along
microtubules and time. Consequently, some of the features defined in [2], which
characterize the segment structure, are redundant. The same segmentation accuracy can
be achieved through a decreased set of features, which results in a reduction of the
computational complexity and a more robust classifier. In this work, the net squared
distance and sum of squared step length were used:

€

ψ1 = x end − x start()2 , (4)

€

ψ2 = x i+1 − x i()2
i
∑ . (5)

Dynein and Kinesin Dynamics. The virus particle is modeled as cargo that is moved

along a 1-dimensional microtubule by motor proteins. The movement of the virus is
dictated by the number of bound motor proteins, and it is assumed that dynein (D) and
kinesin (K) pull the virus in different directions. The maximum number of motor proteins
that can affect the position of the virus is limited by the number of binding sites (ρ) on the
viral capsid. The dynamics of the model are governed by the stochastic binding and
unbinding of the dynein and kinesin particles and their stepping along the microtubule.
The step sizes of the motor proteins, denoted by µD and µK are assumed to be constant (-8
nm for dynein, +8 nm for kinesin), and the displacement of the virus directly corresponds
to one of the motor proteins taking a step in its characteristic direction.

Common Binding Sites, Model I. Comprises common binding sites for dynein and
kinesin, and has been discussed in detail in the main text.

Separate Binding Sites, Model II. A second model is considered where the dynein and
kinesin motor proteins have their own distinct binding sites on the virus (Fig. S1A). This
effectively leads to a situation where there are ρD number of binding sites available for
dynein and ρK for kinesin:

€

D dµ → D+ µD

€

K kµ → K + µK (6)

€

ρD
dα → D

€

ρK
kα → K (7)

€

D dδ → ρD

€

K kδ → ρK (8)

Single Motor Protein, Model III. A model involving only a single motor protein is
considered, where dynein is able to move both to and from the cell periphery (Fig. S1B).
The absence of kinesin reduces the number of events and parameters in the system, which
is represented by:

€

D d+ → D+ µD

€

D d− → D−µD (9)

€

ρ dα → D

€

D dδ → ρ (10)

This model does not lead to directional runs, but rather the particle diffuses randomly.

Kinesin Binding to Dynein, Model IV. The last model presents a binding dependence
between dynein and kinesin. The two families of motors maintain different motilities and
preferential directions, but only dynein is allowed to attach to a virus particle (Fig. S1C).
Kinesin can only bind indirectly to the viral cargo through the dynein complex. This
implies that the number of binding sites available for kinesin (ρK) is, at most, equal to the
number of currently attached dynein complexes. Furthermore the unbinding of a dynein
particle can also cause the detachment of a bound kinesin. This model was used to
investigate the dependence of the kinesin motor protein on dynein.

€

D dµ → D+ µD

€

K kµ → K + µK (11)

€

ρD
dα → D

€

ρK
kα → K (12)

€

D
dδ 1−

K
D

 → ρD

€

D+ K
dδ

K
D

 → ρD (13)

€

K kδ → ρK (14)

One possible mechanism of regulating motor cargo binding is that a motor binds
indirectly to the cargo via another motor protein. In this model, kinesin is not able to bind
to the virus particle directly, but rather binds to dynein. This model only exhibits minus-
end directed motions, and is thus not able to account for the virus motility. This behavior
can be explained by the inability of kinesin to bind the cargo independently of dynein.
Therefore an unbalanced configuration in which kinesin is predominant can never occur.
We conclude that model III and IV would therefore require further levels of regulation to
exhibit bidirectional behavior.

Stochastic Simulation Algorithm. The Stochastic Simulation Algorithm (SSA) [5,6]
simulates the time evolution of stochastic processes occurring at some prescribed rate. At
each iteration of the SSA the process is advanced by a time unit depending on the overall
propensity of the system and by an event that is selected depending on its relative
propensity. The so-called propensity of an event is an unscaled probability for the event
to occur in the interval [t,t+τ), where t is the current time and τ is the time-step. The
propensities for events of the form

€

Xi
ki → X j (15)

are calculated as

€

ai = Xiki , where i is the index of the event, Xi is the number of particles
(e.g. this can be the number of molecules of a particular species if the events are chemical
reactions or dynein proteins in the aforementioned models), and ki is the rate of the
process. Given that there are a total of M events involving N kinds of particles, the
simulation is performed by executing three steps: 1) calculating the time-step, which is
sampled from an exponential distribution:

€

τ ~ ε 1
amm=1

M
∑

 (16)

then, 2) choosing the event that occurs in the interval [t,t+τ) by sampling from the point-
wise probabilities

€

a j / amm=1

M
∑ , namely

€

P(j = l) =
al
amm=1

M
∑

€

l =1,...,M (17)

and lastly, 3) re-computing the propensities and updating the values of Xi for

€

i =1,...,N .
These three steps are performed iteratively until the desired final time is reached.

Optimization of Parameters. The parameters in the models (e.g. for model I: dµ, kµ, dα,
kα, dδ, kδ) are not specified a priori, but determined by the stochastic optimization
algorithm called Covariance Matrix Adaptation Evolutionary Strategy (CMA-ES) [7,8].
This optimization technique has been proven to be effective in handling noise, multi-
modality, and discontinuities in the cost function and it is well suited to the optimization
of stochastic models.

The cost function is chosen as the sum of the symmetric Kullback-Leibler divergence
(DSKL) of directed motion length and velocity probability density functions (PDFs)

€

F = DSKL
length + DSKL

velocity (19)

Given a target PDF p(x) and a test PDF q(x), the DSKL is defined as

€

DSKL = p(x)log p(x)
q(x)

dx
−∞

∞

∫ + q(x)
−∞

∞

∫ log q(x)
p(x)

dx (18)

Here p(x) are the biological directed motion length and velocity distributions, while q(x)
are the in silico distributions that are obtained for a given set of parameters. For each set
of parameters to be evaluated, 3000 trajectories were stochastically simulated and
segmented.

Sensitivity Analysis. Each of the six optimal parameters for the non-competing binding
sites model with 14 receptors was perturbed keeping the other parameters fixed. This is
equivalent to a crosscut of the cost function with respect to the perturbed parameter. The
resulting values of the cost function are shown in Figure S3. The parabolic shapes of the
perturbations indicate that a minimum was found by CMA-ES, and that local
perturbations of the optimal parameters yield a less optimal set of parameters. In some
cases, the optimal parameter found by CMA-ES is not the minimum in the crosscut (e.g.
the stepping rate of kinesin in Fig S3), the reasons being that the model is inherently
noisy and nonlinear.

Parallelization and computational cost. The optimization algorithm was implemented
to allow parallel cost function evaluations according to both shared and distributed
parallelization paradigms. More then 105 CPU hours were needed at the Swiss National
Supercomputing Centre (CSCS) to perform the computations.

Bibliography
1. Sbalzarini I F, Koumoutsakos P (2005) Feature point tracking and trajectory analysis

for video imaging in cell biology. Journal of Structural Biology 151:182-195.

2. Helmuth J A, Burckhardt C J, Koumoutsakos P, Greber U F, Sbalzarini I F (2007) A
novel supervised trajectory segmentation algorithm identifies distinct types of human
adenovirus motion in host cells. Journal of Structural Biology 159:347-358.

3. Chang C C, Lin C J (2001) LIBSVM: a library for support vector machines.

4. Hsu C W, Chang C C, Lin C J (2008) A practical guide to support vector
classification.

5. Bortz A B, Kalos M H, Lebowitz J L (1975) New algorithm for Monte-Carlo
simulation of Ising spin systems. Journal of Computational Physics 17:10-18.

6. Gillespie D T (1977) Exact stochastic simulation of coupled chemical reactions. J.
Phys. Chem. 81:2340-2361.

7. Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test
functions. Parallel Problem Solving from Nature - PPSN VIII 3242:282-291.

8. Hansen N, Ostermeier A (2001) Completely derandomized self-adaptation in
evolution strategies. Evolutionary Computation 9:159-195.

9. King S J, Schroer T A (2000) Dynactin increases the processivity of the cytoplasmic
dynein motor. Nature Cell Biology 2:20-24.

10. Berezuk M A, Schroer T A (2007) Dynactin enhances the processivity of kinesin-2.
Traffic 8:124-129.

Fig. S1: Alternative models for motor-mediated virus movements on microtubules

A) In addition to model I (Fig. 2A), model II provides distinct dynein and kinesin binding
sites on the virus particle allowing a tug-of-war between opposite polarity dynein (blue)
and kinesin (orange) motors on a microtubule (green). B) Model III proposes unique
binding sites, as shown for dynein (blue) allowing the protein to move in both directions.
C) Model IV describes unique binding sites for dynein, to which kinesin is allowed to
bind subsequently.

Fig. S2: Parameter values vs number of binding sites
Optimal parameter values (blue=dµ, green=kµ, red=dα, cyan=kα, magenta=dδ, yellow=kδ)
obtained varying the number of motor binding sites for the overlapping binding sites
model. As can be seen between 6 and 16 number of motor binding sites parameters are
almost constant.

Fig. S3: Sensitivity Analysis.
The six optimal parameters for the non-competing binding sites model with 14 receptors
were each perturbed by a quantity in the range between

€

± 0.05. Shown are (top) the
stepping rates, (middle) binding rates, and (bottom) unbinding rates for dynein (left) and
kinesin (right).

Parameters Binding

sites dµ kµ dα kα dδ kδ F
2 134.70 132.56 0.8360 0.8815 1.4404 1.5681 0.553
4 112.51 109.45 0.3439 0.3634 1.1428 1.2099 0.141
6 108.72 106.42 0.1938 0.2215 1.0571 1.2010 0.088
8 107.72 104.01 0.1542 0.1496 1.1607 1.1252 0.075
10 106.56 103.73 0.1200 0.1215 1.1790 1.1896 0.070
12 107.59 105.89 0.0867 0.0993 1.0762 1.2479 0.069
14 108.33 104.13 0.0799 0.0843 1.1702 1.2162 0.065
16 107.62 107.57 0.0503 0.0760 0.8324 1.3570 0.083
18 37.54 16.51 0.2615 6.4234 0.0001 2.8456 2.156
20 84.83 120.44 0.6701 0.3506 7.8185 4.5548 3.612

Table S1:
Optimized cost function and parameter values against number of motor binding sites for
the overlapping binding sites model. Different optimization runs were performed varying
the number of motor binding sites. Every entry in the table shows the best set of
parameters obtained. dµ and kµ correspond to the dynein and kinesin stepping rate,
respectively, and are expressed in stepping events per second. The single motor speed is
given by dµ or kµ times the step size (8nm). dα and kα are the binding rates for dynein and
kinesin. They are expressed in events per second per receptor. dδ and kδ represent the
unbinding rates for dynein and kinesin and they are expressed as detachment events per
second. F is the cost function value at the end of the optimization.

