Supplementary Text S2

The Poincaré half-plane model, noted \mathcal{H} , is obtained from the Poincaré disk model by the mapping f such that

$$u = f(z) = -i\frac{z+1}{z-1}$$

which is an isometry from D to the upper half-plane \mathcal{H} : {Im(z) > 0}. The distance between two points u, u' in \mathcal{H} is then easily obtained from the distance in D by setting $z = f^{-1}(u)$ and $z' = f^{-1}(u')$ in the expression (7) in the main text. This gives

$$d_3(u, u') = d_2(f^{-1}(u), f^{-1}(u')) = \operatorname{arctanh} \frac{|u' - u|}{|u' - \overline{u}|}$$

Geodesics in \mathcal{H} are lines or circles orthogonal to the real axis. The surface element in H^2 is

$$ds^2 = u_2^{-2}(du_1^2 + du_2^2),$$

if $u = u_1 + iu_2$.